D - 00.00.00
WYMAGANIA OGÓLNE

1. WSTECP

1.1. Przedmiot SST

Przedmiotem niniejszej szczegółowej specyfikacji technicznej (SST) są wymagania ogólne dotyczące wykonania i odbioru robót drogowych w zwiazanych z przebudowa „Płyty Rynku" w Obrzycku.

1.2. Zakres stosowania SST

Szczegółowa specyfikacja techniczna jest stosowana jako dokument przetargowy i kontraktowy przy zlecaniu realizacji robót wymienionych w pkt. 1.1.

1.3. Zakres robót objętych SST

Ustalenia zawarte w niniejszej specyfikacji obejmuja wymagania ogólne, wspólne dla robót objętych szcezgółowymi specyfikacjami technicznymi dla poszczególnych asortymentów robót drogowych.

1.4. Określenia podstawowe

Użyte w SST wymienione poniżej określenia należy rozumieć w każdym przypadku następujaco:
1.4.1.Budowla drogowa - obiekt budowlany, nie będaccy budynkiem, stanowiący całość technicznoużytkowa (droga) albo jego część stanowiącą odrębny element konstrukcyjny lub technologiczny (obiekt mostowy, korpus ziemny, węzeł).
1.4.2.Chodnik - wyznaczony pas terenu przy jezdni lub odsunięty od jezdni, przeznaczony do ruchu pieszych.
1.4.3. Długość mostu - odległość między zewnętrznymi krawędziami pomostu, a w przypadku mostów łukowych z nadsypka - odległość w świetle podstaw sklepienia mierzona w osi jezdni drogowej.
1.4.4. Droga - wydzielony pas terenu przeznaczony do ruchu lub postoju pojazdów oraz ruchu pieszych wraz z wszelkimi urzadzeniami technicznymi związanymi z prowadzeniem i zabezpieczeniem ruchu.
1.4.5. Droga tymczasowa (montażowa) - droga specjalnie przygotowana, przeznaczona do ruchu pojazdów obsługujacych zadanie budowlane na czas jego wykonania, przewidziana do usunięcia po jego zakończeniu.
1.4.6.Dziennik budowy - zeszyt z ponumerowanymi stronami, opatrzony pieczęcia organu wydajacego, wydany zgodnie z obowiązujacymi przepisami, stanowiacy urzędowy dokument przebiegu robót budowlanych, służący do notowania zdarzeń i okoliczności zachodzaccych w toku wykonywania robót, rejestrowania dokonywanych odbiorów robót, przekazywania poleceń i innej korespondencji technicznej pomiędzy Inżynierem/ Kierownikiem projektu, Wykonawcą i projektantem.
1.4.7. Estakada - obiekt zbudowany nad przeszkodą terenowa dla zapewnienia komunikacji drogowej i ruchu pieszego.
1.4.8. Inżynier/Kierownik projektu - osoba wymieniona w danych kontraktowych (wyznaczona przez Zamawiajacego, o której wyznaczeniu poinformowany jest Wykonawca), odpowiedzialna za nadzorowanie robót i administrowanie kontraktem.
1.4.9. Jezdnia - część korony drogi przeznaczona do ruchu pojazdów.
1.4.10. Kierownik budowy - osoba wyznaczona przez Wykonawcę, upoważniona do kierowania robotami i do występowania w jego imieniu w sprawach realizacji kontraktu.
1.4.11. Korona drogi - jezdnia (jezdnie) z poboczami lub chodnikami, zatokami, pasami awaryjnego postoju i pasami dzielacymi jezdnie.
1.4.12. Konstrukcja nawierzchni - układ warstw nawierzchni wraz ze sposobem ich połączenia.
1.4.13. Konstrukcja nośna (przęsło lub przęsła obiektu mostowego) - część obiektu oparta na podporach mostowych, tworzaca ustrój niosacy dla przeniesienia ruchu pojazdów lub pieszych.
1.4.14. Korpus drogowy - nasyp lub ta część wykopu, która jest ograniczona korona drogi i skarpami rowów.
1.4.15. Koryto - element uformowany w korpusie drogowym w celu ułożenia w nim konstrukcji nawierzchni.
1.4.16. Ksiażza obmiarów - akceptowany przez Inżyniera/Kierownika projektu zeszyt z ponumerowanymi stronami, służący do wpisywania przez Wykonawcę obmiaru dokonywanych robót w formie wyliczeń, szkiców i ew. dodatkowych załączników. Wpisy w książce obmiarów podlegaja potwierdzeniu przez Inżyniera/Kierownika projektu.
1.4.17. Laboratorium - drogowe lub inne laboratorium badawcze, zaakceptowane przez Zamawiającego, niezbędne do przeprowadzenia wszelkich badań i prób związanych z ocena jakości materiałów oraz robót.
1.4.18. Materiały - wszelkie tworzywa niezbędne do wykonania robót, zgodne z dokumentacja projektowa i specyfikacjami technicznymi, zaakceptowane przez Inżyniera/ Kierownika projektu.
1.4.19. Most - obiekt zbudowany nad przeszkodą wodną dla zapewnienia komunikacji drogowej i ruchu pieszego.
1.4.20. Nawierzchnia - warstwa lub zespół warstw służących do przejmowania i rozkładania obciażzeń od ruchu na podłoże gruntowe i zapewniających dogodne warunki dla ruchu.
a) Warstwa ścieralna - górna warstwa nawierzchni poddana bezpośrednio oddziaływaniu ruchu i czynników atmosferycznych.
b) Warstwa wiążąca - warstwa znajdująca się między warstwą ścieralna a podbudową, zapewniająca lepsze rozłożenie naprężeń w nawierzchni i przekazywanie ich na podbudowę.
c) Warstwa wyrównawcza - warstwa służąca do wyrównania nierówności podbudowy lub profilu istniejacej nawierzchni.
d) Podbudowa - dolna część nawierzchni służąca do przenoszenia obciążeń od ruchu na podłoże. Podbudowa może składać się z podbudowy zasadniczej i podbudowy pomocniczej.
e) Podbudowa zasadnicza - górna część podbudowy spełniajaca funkcje nośne w konstrukcji nawierzchni. Może ona składać się z jednej lub dwóch warstw.
f) Podbudowa pomocnicza - dolna część podbudowy spełniająca, obok funkcji nośnych, funkcje zabezpieczenia nawierzchni przed działaniem wody, mrozu i przenikaniem cząstek podłoża. Może zawierać warstwę mrozoochronna, odsączająca lub odcinająca.
g) Warstwa mrozoochronna - warstwa, której głównym zadaniem jest ochrona nawierzchni przed skutkami działania mrozu.
h) Warstwa odcinająca - warstwa stosowana w celu uniemożliwienia przenikania cząstek drobnych gruntu do warstwy nawierzchni leżaccej powyżej.
i) Warstwa odsączająca - warstwa służąca do odprowadzenia wody przedostającej się do nawierzchni.
1.4.21. Niweleta - wysokościowe i geometryczne rozwinięcie na płaszczyźnie pionowego przekroju w osi drogi lub obiektu mostowego.
1.4.22. Obiekt mostowy - most, wiadukt, estakada, tunel, kładka dla pieszych i przepust.
1.4.23. Objazd tymczasowy - droga specjalnie przygotowana i odpowiednio utrzymana do przeprowadzenia ruchu publicznego na okres budowy.
1.4.24. Odpowiednia (bliska) zgodność - zgodność wykonywanych robót z dopuszczonymi tolerancjami, a jeśli przedział tolerancji nie został określony - z przeciętnymi tolerancjami, przyjmowanymi zwyczajowo dla danego rodzaju robót budowlanych.
1.4.25. Pas drogowy - wydzielony liniami granicznymi pas terenu przeznaczony do umieszczania w nim drogi i związanych z nią urządzeń oraz drzew i krzewów. Pas drogowy może również obejmować teren przewidziany do rozbudowy drogi i budowy urzadzeń chroniących ludzi i środowisko przed uciażliwościami powodowanymi przez ruch na drodze.
1.4.26. Pobocze - cześć korony drogi przeznaczona do chwilowego postoju pojazdów, umieszczenia urzązeń organizacji i bezpieczeństwa ruchu oraz do ruchu pieszych, służąca jednocześnie do bocznego oparcia konstrukcji nawierzchni.
1.4.27. Podłoże nawierzchni - grunt rodzimy lub nasypowy, leżący pod nawierzchnia do głębokości przemarzania.
1.4.28. Podłoże ulepszone nawierzchni - górna warstwa podłoża, leżaca bezpośrednio pod nawierzchnia, ulepszona w celu umożliwienia przejęcia ruchu budowlanego i właściwego wykonania nawierzchni.
1.4.29. Polecenie Inżyniera/Kierownika projektu - wszelkie polecenia przekazane Wykonawcy przez Inżyniera/Kierownika projektu, w formie pisemnej, dotyczące sposobu realizacji robót lub innych spraw zwiazanych z prowadzeniem budowy.
1.4.30. Projektant - uprawniona osoba prawna lub fizyczna będąca autorem dokumentacji projektowej.
1.4.31. Przedsięwzięcie budowlane - kompleksowa realizacja nowego połączenia drogowego lub całkowita modernizacja/przebudowa (zmiana parametrów geometrycznych trasy w planie i przekroju podłużnym) istniejacego połączenia.
1.4.32. Przepust - budowla o przekroju poprzecznym zamkniętym, przeznaczona do przeprowadzenia cieku, szlaku wędrówek zwierząt dziko żyjacych lub urządzeń technicznych przez korpus drogowy.
1.4.33. Przeszkoda naturalna - element środowiska naturalnego, stanowiący utrudnienie w realizacji zadania budowlanego, na przykład dolina, bagno, rzeka, szlak wędrówek dzikich zwierząt itp.
1.4.34. Przeszkoda sztuczna - dzieło ludzkie, stanowiące utrudnienie w realizacji zadania budowlanego, na przykład droga, kolej, rurociag, kanał, ciag pieszy lub rowerowy itp.
1.4.35. Przetargowa dokumentacja projektowa - część dokumentacji projektowej, która wskazuje lokalizację, charakterystykę i wymiary obiektu będącego przedmiotem robót.
1.4.36. Przyczółek - skrajna podpora obiektu mostowego. Może składać się z pełnej ściany, słupów lub innych form konstrukcyjnych, np. skrzyń, komór.
1.4.37. Rekultywacja - roboty majace na celu uporzadkowanie i przywrócenie pierwotnych funkcji terenom naruszonym w czasie realizacji zadania budowlanego.
1.4.38. Rozpiętość teoretyczna - odległość między punktami podparcia (łożyskami), przęsła mostowego.
1.4.39. Szerokość całkowita obiektu (mostu / wiaduktu) - odległość między zewnętrznymi krawędziami konstrukcji obiektu, mierzona w linii prostopadłej do osi podłużnej, obejmuje całkowita szerokość konstrukcyjną ustroju niosacego.
1.4.40.Szerokość użytkowa obiektu - szerokość jezdni (nawierzchni) przeznaczona dla poszczególnych rodzajów ruchu oraz szerokość chodników mierzona w świetle poręczy mostowych z wyłączeniem konstrukcji przy jezdni dołem oddzielajacej ruch kołowy od ruchu pieszego.
1.4.41.Ślepy kosztorys - wykaz robót z podaniem ich ilości (przedmiarem) w kolejności technologicznej ich wykonania.
1.4.42. Teren budowy - teren udostępniony przez Zamawiającego dla wykonania na nim robót oraz inne miejsca wymienione w kontrakcie jako tworzące część terenu budowy.
1.4.43.Tunel - obiekt zagłębiony poniżej poziomu terenu dla zapewnienia komunikacji drogowej i ruchu pieszego.
1.4.44. Wiadukt - obiekt zbudowany nad linią kolejową lub inną droga dla bezkolizyjnego zapewnienia komunikacji drogowej i ruchu pieszego.
1.4.45. Zadanie budowlane - część przedsięwzięcia budowlanego, stanowiąca odrębna całość konstrukcyjną lub technologiczna, zdolna do samodzielnego pełnienia funkcji techniczno-użytkowych. Zadanie może polegać na wykonywaniu robót zwiazzanych z budowa, modernizacja/ przebudowa, utrzymaniem oraz ochrona budowli drogowej lub jej elementu.

1.5. Ogólne wymagania dotyczące robót

Wykonawca jest odpowiedzialny za jakość wykonanych robót, bezpieczeństwo wszelkich czynności na terenie budowy, metody użyte przy budowie oraz za ich zgodność z dokumentacja projektowa, SST i poleceniami Inżyniera/Kierownika projektu.

1.5.1. Przekazanie terenu budowy

Zamawiajacy w terminie określonym w dokumentach kontraktowych przekaże Wykonawcy teren budowy wraz ze wszystkimi wymaganymi uzgodnieniami prawnymi i administracyjnymi,dziennik budowy oraz jeden egzemplarz dokumentacji projektowej i SST.

Na Wykonawcy spoczywa odpowiedzialność za ochrone przekazanych mu punktów pomiarowych do chwili odbioru ostatecznego robót. Uszkodzone lub zniszczone znaki geodezyjne Wykonawca odtworzy i utrwali na własny koszt.

1.5.2. Dokumentacja projektowa

Dokumentacja projektowa będzie zawierać rysunki, obliczenia i dokumenty, zgodne z wykazem podanym w szczegółowych warunkach umowy, uwzględniajacym podział na dokumentację projektowa:

- Zamawiajacego; wykaz pozycji, które stanowia przetargową dokumentację projektowa oraz projektową dokumentację wykonawcza (techniczna) i zostaną przekazane Wykonawcy,
- Wykonawcy; wykaz zawierajacy spis dokumentacji projektowej, którą Wykonawca opracuje w ramach ceny kontraktowej.

1.5.3. Zgodność robót z dokumentacja projektową i SST

Dokumentacja projektowa, SST i wszystkie dodatkowe dokumenty przekazane Wykonawcy przez Inżyniera/Kierownika projektu stanowią część umowy, a wymagania określone w choćby jednym z nich są obowiazujące dla Wykonawcy tak jakby zawarte były w całej dokumentacji.

W przypadku rozbieżności w ustaleniach poszczególnych dokumentów obowiązuje kolejność ich ważności wymieniona w „Kontraktowych warunkach ogólnych" („Ogólnych warunkach umowy").

Wykonawca nie może wykorzystywać błędów lub opuszczeń w dokumentach kontraktowych, a o ich wykryciu winien natychmiast powiadomić Inżyniera/Kierownika projektu, który podejmie decyzję o wprowadzeniu odpowiednich zmian i poprawek.

W przypadku rozbieżności, wymiary podane na piśmie sa ważniejsze od wymiarów określonych na podstawie odczytu ze skali rysunku.

Wszystkie wykonane roboty i dostarczone materiały będą zgodne z dokumentacją projektową i SST.

Dane określone w dokumentacji projektowej i w SST będą uważane za wartości docelowe, od których dopuszczalne sa odchylenia w ramach określonego przedziału tolerancji. Cechy materiałów i elementów budowli musza wykazywać zgodność z określonymi wymaganiami, a rozrzuty tych cech nie mogą przekraczać dopuszczalnego przedziału tolerancji.

W przypadku, gdy materiały lub roboty nie będą w pełni zgodne z dokumentacja projektowa lub SST i wpłynie to na niezadowalajaca jakość elementu budowli, to takie materiały zostana zastapione innymi, a elementy budowli rozebrane i wykonane ponownie na koszt Wykonawcy.

1.5.4. Zabezpieczenie terenu budowy

a) Roboty modernizacyjne/ przebudowa i remontowe („pod ruchem")

Wykonawca jest zobowiązany do utrzymania ruchu publicznego oraz utrzymania istniejacych obiektów (jezdnie, ścieżki rowerowe, ciagi piesze, znaki drogowe, bariery ochronne, urzadzenia odwodnienia itp.) na terenie budowy, w okresie trwania realizacji kontraktu, aż do zakończenia i odbioru ostatecznego robót.

Przed przystapieniem do robót Wykonawca przedstawi Inżynierowi/Kierownikowi projektu do zatwierdzenia, uzgodniony z odpowiednim zarzadem drogi i organem zarzadzajacym ruchem, projekt organizacji ruchu i zabezpieczenia robót w okresie trwania budowy. W zależności od potrzeb i postępu robót projekt organizacji ruchu powinien być na bieżąco aktualizowany przez Wykonawcę. Każda zmiana, w stosunku do zatwierdzonego projektu organizacji ruchu, wymaga każdorazowo ponownego zatwierdzenia projektu.

W czasie wykonywania robót Wykonawca dostarczy, zainstaluje i będzie obsługiwał wszystkie tymczasowe urządzenia zabezpieczajace takie jak: zapory, światła ostrzegawcze, sygnały, itp., zapewniajac w ten sposób bezpieczeństwo pojazdów i pieszych.

Wykonawca zapewni stałe warunki widoczności w dzień i w nocy tych zapór i znaków, dla których jest to nieodzowne ze względów bezpieczeństwa.

Wszystkie znaki, zapory i inne urządzenia zabezpieczajace będa akceptowane przez Inżyniera/Kierownika projektu.

Fakt przystapienia do robót Wykonawca obwieści publicznie przed ich rozpoczęciem w sposób uzgodniony z Inżynierem/Kierownikiem projektu oraz przez umieszczenie, w miejscach i ilościach określonych przez Inżyniera/Kierownika projektu, tablic informacyjnych, których treść będzie zatwierdzona przez Inżyniera/Kierownika projektu. Tablice informacyjne będa utrzymywane przez Wykonawcę w dobrym stanie przez cały okres realizacji robót.

Koszt zabezpieczenia terenu budowy nie podlega odrębnej zapłacie i przyjmuje się, że jest włączony w cenę kontraktowa.

1.5.5. Ochrona środowiska w czasie wykonywania robót

Wykonawca ma obowiazek znać i stosować w czasie prowadzenia robót wszelkie przepisy dotyczace ochrony środowiska naturalnego.

W okresie trwania budowy i wykańczania robót Wykonawca będzie:
a) utrzymywać teren budowy i wykopy w stanie bez wody stojacej,
b) podejmować wszelkie uzasadnione kroki mające na celu stosowanie się do przepisów i norm dotyczacych ochrony środowiska na terenie i wokół terenu budowy oraz będzie unikać uszkodzeń lub uciażliwości dla osób lub dóbr publicznych i innych, a wynikających z nadmiernego hałasu, wibracji, zanieczyszczenia lub innych przyczyn powstałych w następstwie jego sposobu działania.

Stosując się do tych wymagań będzie miał szczególny wzgląd na:

1) lokalizację baz, warsztatów, magazynów, składowisk, ukopów i dróg dojazdowych,
2) środki ostrożności i zabezpieczenia przed:
a) zanieczyszczeniem zbiorników i cieków wodnych pyłami lub substancjami toksycznymi,
b) zanieczyszczeniem powietrza pyłami i gazami,
c) możliwością powstania pożaru.

1.5.6. Ochrona przeciwpożarowa

Wykonawca będzie przestrzegać przepisy ochrony przeciwpożarowej.
Wykonawca będzie utrzymywać, wymagany na podstawie odpowiednich przepisów sprawny sprzęt przeciwpożarowy, na terenie baz produkcyjnych, w pomieszczeniach biurowych, mieszkalnych, magazynach oraz w maszynach i pojazdach.

Materiały łatwopalne będą składowane w sposób zgodny z odpowiednimi przepisami i zabezpieczone przed dostępem osób trzecich.

Wykonawca będzie odpowiedzialny za wszelkie straty spowodowane pożarem wywołanym jako rezultat realizacji robót albo przez personel Wykonawcy.

1.5.7. Materiały szkodliwe dla otoczenia

Materiały, które w sposób trwały sa szkodliwe dla otoczenia, nie będa dopuszczone do użycia.
Nie dopuszcza się użycia materiałów wywołujących szkodliwe promieniowanie o stężeniu większym od dopuszczalnego, określonego odpowiednimi przepisami.

Wszelkie materiały odpadowe użyte do robót będą miały aprobatę techniczną wydana przez uprawniona jednostke, jednoznacznie określajaca brak szkodliwego oddziaływania tych materiałów na środowisko.

Materiały, które są szkodliwe dla otoczenia tylko w czasie robót, a po zakończeniu robót ich szkodliwość zanika (np. materiały pylaste) moga być użyte pod warunkiem przestrzegania wymagań technologicznych wbudowania. Jeżeli wymagaja tego odpowiednie przepisy Wykonawca powinien otrzymać zgodę na użycie tych materiałów od właściwych organów administracji państwowej.

Jeżeli Wykonawca użył materiałów szkodliwych dla otoczenia zgodnie ze specyfikacjami, a ich użycie spowodowało jakiekolwiek zagrożenie środowiska, to konsekwencje tego poniesie Zamawiajacy.
1.5.8. Ochrona własności publicznej i prywatnej

Wykonawca odpowiada za ochronę instalacji na powierzchni ziemi i za urzadzenia podziemne, takie jak rurociagi, kable itp. oraz uzyska od odpowiednich władz będacych właścicielami tych urzadzeń potwierdzenie informacji dostarczonych mu przez Zamawiajacego w ramach planu ich lokalizacji. Wykonawca zapewni właściwe oznaczenie i zabezpieczenie przed uszkodzeniem tych instalacji i urządzeń w czasie trwania budowy.

Wykonawca zobowiazany jest umieścić w swoim harmonogramie rezerwe czasowa dla wszelkiego rodzaju robót, które maja być wykonane w zakresie przełożenia instalacji i urządzeń podziemnych na terenie budowy i powiadomić Inżyniera/Kierownika projektu i władze lokalne o zamiarze rozpoczęcia robót. O fakcie przypadkowego uszkodzenia tych instalacji Wykonawca bezzwłocznie powiadomi Inżyniera/Kierownika projektu i zainteresowane władze oraz będzie z nimi współpracował dostarczajac wszelkiej pomocy potrzebnej przy dokonywaniu napraw. Wykonawca będzie odpowiadać za wszelkie spowodowane przez jego działania uszkodzenia instalacji na powierzchni ziemi i urządzeń podziemnych wykazanych w dokumentach dostarczonych mu przez Zamawiajacego.

Jeżeli teren budowy przylega do terenów z zabudowa mieszkaniowa, Wykonawca będzie realizować roboty w sposób powodujacy minimalne niedogodności dla mieszkańców. Wykonawca odpowiada za wszelkie uszkodzenia zabudowy mieszkaniowej w sasiedztwie budowy, spowodowane jego działalnościa.

Inżynier/Kierownik projektu będzie na bieżąco informowany o wszystkich umowach zawartych pomiędzy Wykonawca a właścicielami nieruchomości i dotyczących korzystania z własności i dróg wewnętrznych. Jednakże, ani Inżynier/Kierownik projektu ani Zamawiający nie będzie ingerował w takie porozumienia, o ile nie będą one sprzeczne z postanowieniami zawartymi w warunkach umowy.

1.5.9. Ograniczenie obciążeń osi pojazdów

Wykonawca będzie stosować się do ustawowych ograniczeń nacisków osi na drogach publicznych przy transporcie materiałów i wyposażenia na i z terenu robót. Wykonawca uzyska wszelkie niezbędne zezwolenia i uzgodnienia od właściwych władz co do przewozu nietypowych wagowo ładunków (ponadnormatywnych) i o każdym takim przewozie będzie powiadamiał Inżyniera/Kierownika projektu. Inżynier/Kierownik projektu może polecić, aby pojazdy nie spełniające tych warunków zostały usunięte z terenu budowy. Pojazdy powodujące nadmierne obciążenie osiowe nie będą dopuszczone na świeżo ukończony fragment budowy w obrębie terenu budowy i

Wykonawca będzie odpowiadał za naprawę wszelkich robót w ten sposób uszkodzonych, zgodnie z poleceniami Inżyniera/Kierownika projektu.

1.5.10. Bezpieczeństwo i higiena pracy

Podczas realizacji robót Wykonawca będzie przestrzegać przepisów dotyczących bezpieczeństwa i higieny pracy.

W szczególności Wykonawca ma obowiazek zadbać, aby personel nie wykonywał pracy w warunkach niebezpiecznych, szkodliwych dla zdrowia oraz nie spełniajacych odpowiednich wymagań sanitarnych.

Wykonawca zapewni i będzie utrzymywał wszelkie urzadzenia zabezpieczajace, socjalne oraz sprzęt i odpowiednią odzież dla ochrony życia i zdrowia osób zatrudnionych na budowie oraz dla zapewnienia bezpieczeństwa publicznego.

Uznaje się, że wszelkie koszty związane z wypełnieniem wymagań określonych powyżej nie podlegają odrębnej zapłacie i są uwzględnione w cenie kontraktowej.

1.5.11. Ochrona i utrzymanie robót

Wykonawca będzie odpowiadał za ochronę robót i za wszelkie materiały i urządzenia używane do robót od daty rozpoczęcia do daty wydania potwierdzenia zakończenia robót przez Inżyniera/Kierownika projektu.

Wykonawca będzie utrzymywać roboty do czasu odbioru ostatecznego. Utrzymanie powinno być prowadzone w taki sposób, aby budowla drogowa lub jej elementy były w zadowalajacym stanie przez cały czas, do momentu odbioru ostatecznego.

Jeśli Wykonawca w jakimkolwiek czasie zaniedba utrzymanie, to na polecenie Inżyniera/Kierownika projektu powinien rozpoczać roboty utrzymaniowe nie później niż w 24 godziny po otrzymaniu tego polecenia.

1.5.12. Stosowanie się do prawa i innych przepisów

Wykonawca zobowiązany jest znać wszystkie zarządzenia wydane przez władze centralne i miejscowe oraz inne przepisy, regulaminy i wytyczne, które są w jakikolwiek sposób związane z wykonywanymi robotami i będzie w pełni odpowiedzialny za przestrzeganie tych postanowień podczas prowadzenia robót.

Wykonawca będzie przestrzegać praw patentowych i będzie w pełni odpowiedzialny za wypełnienie wszelkich wymagań prawnych odnośnie znaków firmowych, nazw lub innych chronionych praw w odniesieniu do sprzętu, materiałów lub urządzeń użytych lub związanych z wykonywaniem robót i w sposób ciagły będzie informować Inżyniera/Kierownika projektu o swoich działaniach, przedstawiając kopie zezwoleń i inne odnośne dokumenty. Wszelkie straty, koszty postępowania, obciążenia i wydatki wynikłe z lub związane z naruszeniem jakichkolwiek praw patentowych pokryje Wykonawca, z wyjatkiem przypadków, kiedy takie naruszenie wyniknie z wykonania projektu lub specyfikacji dostarczonej przez Inżyniera/Kierownika projektu.

1.5.13. Równoważność norm i zbiorów przepisów prawnych

Gdziekolwiek w dokumentach kontraktowych powołane sa konkretne normy i przepisy, które spełniać mają materiały, sprzęt i inne towary oraz wykonane i zbadane roboty, będą obowiązywać postanowienia najnowszego wydania lub poprawionego wydania powołanych norm i przepisów o ile w warunkach kontraktu nie postanowiono inaczej. W przypadku gdy powołane normy i przepisy sa państwowe lub odnoszą się do konkretnego kraju lub regionu, mogą być również stosowane inne odpowiednie normy zapewniajace równy lub wyższy poziom wykonania niż powołane normy lub przepisy, pod warunkiem ich sprawdzenia i pisemnego zatwierdzenia przez Inżyniera/Kierownika projektu. Różnice pomiędzy powołanymi normami a ich proponowanymi zamiennikami muszą być dokładnie opisane przez Wykonawcę i przedłożone Inżynierowi/Kierownikowi projektu do zatwierdzenia.
1.5.14. Wykopaliska

Wszelkie wykopaliska, monety, przedmioty wartościowe, budowle oraz inne pozostałości o znaczeniu geologicznym lub archeologicznym odkryte na terenie budowy będą uważane za własność Zamawiajacego. Wykonawca zobowiazzany jest powiadomić Inżyniera/Kierownika projektu i postępować zgodnie z jego poleceniami. Jeżeli w wyniku tych poleceń Wykonawca poniesie koszty i/lub wystapią opóźnienia w robotach, Inżynier/ Kierownik projektu po uzgodnieniu z Zamawiającym i Wykonawcą ustali wydłużenie czasu wykonania robót i/lub wysokość kwoty, o którą należy zwiększyć cenę kontraktowa.

1.6. Zaplecze Zamawiającego (o ile warunki kontraktu przewidują realizację)

Wykonawca zobowiązany jest zabezpieczyć Zamawiającemu, pomieszczenia biurowe, sprzęt, transport oraz inne urzadzenia towarzyszące, zgodnie z wymaganiami podanymi w D-00.00.01 „Zaplecze Zamawiajacego".

2. MATERIAŁY

2.1. Źródła uzyskania materiałów

Co najmniej na trzy tygodnie przed zaplanowanym wykorzystaniem jakichkolwiek materiałów przeznaczonych do robót, Wykonawca przedstawi Inżynierowi/Kierownikowi projektu do zatwierdzenia, szczegółowe informacje dotyczace proponowanego źródła wytwarzania, zamawiania lub wydobywania tych materiałów jak również odpowiednie świadectwa badań laboratoryjnych oraz próbki materiałów.

Zatwierdzenie partii materiałów z danego źródła nie oznacza automatycznie, że wszelkie materiały z danego żródła uzyskaja zatwierdzenie.

Wykonawca zobowiazany jest do prowadzenia badań w celu wykazania, że materiały uzyskane z dopuszczonego źródła w sposób ciagłł spełniaja wymagania SST w czasie realizacji robót.

2.2. Pozyskiwanie materiałów miejscowych

Wykonawca odpowiada za uzyskanie pozwoleń od właścicieli i odnośnych władz na pozyskanie materiałów ze źródeł miejscowych włączając w to źródła wskazane przez Zamawiającego i jest zobowiązany dostarczyć Inżynierowi/Kierownikowi projektu wymagane dokumenty przed rozpoczęciem eksploatacji źródła.

Wykonawca przedstawi Inżynierowi/Kierownikowi projektu do zatwierdzenia dokumentację zawierajaca raporty z badań terenowych i laboratoryjnych oraz proponowana przez siebie metode wydobycia i selekcji, uwzględniajac aktualne decyzje o eksploatacji, organów administracji państwowej i samorzadowej.

Wykonawca ponosi odpowiedzialność za spełnienie wymagań ilościowych i jakościowych materiałów pochodzących ze źródeł miejscowych.

Wykonawca ponosi wszystkie koszty, z tytułu wydobycia materiałów, dzierżawy i inne jakie okażą się potrzebne w związku z dostarczeniem materiałów do robót.

Humus i nadkład czasowo zdjęte z terenu wykopów, dokopów i miejsc pozyskania materiałów miejscowych będa formowane w hałdy i wykorzystane przy zasypce i rekultywacji terenu po ukończeniu robót.

Wszystkie odpowiednie materiały pozyskane z wykopów na terenie budowy lub z innych miejsc wskazanych w dokumentach umowy będą wykorzystane do robót lub odwiezione na odkład odpowiednio do wymagań umowy lub wskazań Inżyniera/Kierownika projektu.

Wykonawca nie będzie prowadzić żadnych wykopów w obrębie terenu budowy poza tymi, które zostały wyszczególnione w dokumentach umowy, chyba, że uzyska na to pisemną zgodę Inżyniera/Kierownika projektu.

Eksploatacja źŕdeł materiałów będzie zgodna z wszelkimi regulacjami prawnymi obowiązujacymi na danym obszarze.

2.3. Materiały nie odpowiadające wymaganiom

Materiały nie odpowiadajace wymaganiom zostana przez Wykonawcę wywiezione z terenu budowy i złożone w miejscu wskazanym przez Inżyniera/Kierownika projektu. Jeśli Inżynier/Kierownik projektu zezwoli Wykonawcy na użycie tych materiałów do innych robót, niż te dla których zostały zakupione, to koszt tych materiałów zostanie odpowiednio przewartościowany (skorygowany) przez Inżyniera/Kierownika projektu.

Każdy rodzaj robót, w którym znajduja się nie zbadane i nie zaakceptowane materiały, Wykonawca wykonuje na własne ryzyko, licząc się z jego nieprzyjęciem, usunięciem i niezapłaceniem

2.4. Wariantowe stosowanie materiałów

Jeśli dokumentacja projektowa lub SST przewiduja możliwość wariantowego zastosowania rodzaju materiału w wykonywanych robotach, Wykonawca powiadomi Inżyniera/Kierownika projektu o swoim zamiarze co najmniej 3 tygodnie przed użyciem tego materiału, albo wokresie dłuższym, jeśli będzie to potrzebne z uwagi na wykonanie badań wymaganych przez Inżyniera/Kierownika projektu. Wybrany i zaakceptowany rodzaj materiału nie może być później zmieniany bez zgody Inżyniera/Kierownika projektu.

2.5. Przechowywanie i składowanie materiałów

Wykonawca zapewni, aby tymczasowo składowane materiały, do czasu gdy będą one użyte do robót, były zabezpieczone przed zanieczyszczeniami, zachowały swoja jakość i właściwości i były dostępne do kontroli przez Inżyniera/Kierownika projektu.

Miejsca czasowego składowania materiałów będa zlokalizowane w obrębie terenu budowy w miejscach uzgodnionych z Inżynierem/Kierownikiem projektu lub poza terenem budowy w miejscach zorganizowanych przez Wykonawcę i zaakceptowanych przez Inżyniera/Kierownika projektu.

2.6. Inspekcja wytwórni materiałów

Wytwórnie materiałów mogą być okresowo kontrolowane przez Inżyniera/ Kierownika projektu w celu sprawdzenia zgodności stosowanych metod produkcji z wymaganiami. Próbki materiałów moga być pobierane w celu sprawdzenia ich właściwości. Wyniki tych kontroli będa stanowić podstawę do akceptacji określonej partii materiałów pod względem jakości.

W przypadku, gdy Inżynier/Kierownik projektu będzie przeprowadzał inspekcję wytwórni, muszą być spełnione następujace warunki:
a) Inżynier/Kierownik projektu będzie miał zapewniona współpracę i pomoc Wykonawcy oraz producenta materiałów w czasie przeprowadzania inspekcji,
b) Inżynier/Kierownik projektu będzie miał wolny dostęp, w dowolnym czasie, do tych części wytwórni, gdzie odbywa się produkcja materiałów przeznaczonych do realizacji robót,
c) Jeżeli produkcja odbywa się w miejscu nie należącym do Wykonawcy, Wykonawca uzyska dla Inżyniera/Kierownika projektu zezwolenie dla przeprowadzenia inspekcji i badań w tych miejscach.

3. SPRZĘT

Wykonawca jest zobowiązany do używania jedynie takiego sprzętu, który nie spowoduje niekorzystnego wpływu na jakość wykonywanych robót. Sprzęt używany do robót powinien być zgodny z ofertą Wykonawcy i powinien odpowiadać pod względem typów i ilości wskazaniom zawartym w SST, PZJ lub projekcie organizacji robót, zaakceptowanym przez Inżyniera/Kierownika projektu; w przypadku braku ustaleń w wymienionych wyżej dokumentach, sprzęt powinien być uzgodniony i zaakceptowany przez Inżyniera/Kierownika projektu.

Liczba i wydajność sprzętu powinny gwarantować przeprowadzenie robót, zgodnie z zasadami określonymi w dokumentacji projektowej, SST i wskazaniach Inżyniera/ Kierownika projektu.

Sprzęt będący własnościa Wykonawcy lub wynajęty do wykonania robót ma być utrzymywany w dobrym stanie i gotowości do pracy. Powinien być zgodny z normami ochrony środowiska i przepisami dotyczacymi jego użytkowania.

Wykonawca dostarczy Inżynierowi/Kierownikowi projektu kopie dokumentów potwierdzających dopuszczenie sprzętu do użytkowania i badań okresowych, tam gdzie jest to wymagane przepisami.

Wykonawca będzie konserwować sprzęt jak również naprawiać lub wymieniać sprzęt niesprawny.

Jeżeli dokumentacja projektowa lub SST przewiduja możliwość wariantowego użycia sprzętu przy wykonywanych robotach, Wykonawca powiadomi Inżyniera/ Kierownika projektu o swoim zamiarze wyboru i uzyska jego akceptację przed użyciem sprzętu. Wybrany sprzęt, po akceptacji Inżyniera/Kierownika projektu, nie może być później zmieniany bez jego zgody.

Jakikolwiek sprzęt, maszyny, urządzenia i narzędzia nie gwarantujące zachowania warunków umowy, zostaną przez Inżyniera/Kierownika projektu zdyskwalifikowane i nie dopuszczone do robót.

4. TRANSPORT

Wykonawca jest zobowiązany do stosowania jedynie takich środków transportu, które nie wpłyną niekorzystnie na jakość wykonywanych robót i właściwości przewożonych materiałów.

Liczba środków transportu powinna zapewniać prowadzenie robót zgodnie z zasadami określonymi w dokumentacji projektowej, SST i wskazaniach Inżyniera/ Kierownika projektu, w terminie przewidzianym umowa.

Przy ruchu na drogach publicznych pojazdy będą spełniać wymagania dotyczące przepisów ruchu drogowego w odniesieniu do dopuszczalnych nacisków na oś i innych parametrów technicznych. Srodki transportu nie spełniajace tych warunków moga być dopuszczone przez Inżyniera/Kierownika projektu, pod warunkiem przywrócenia stanu pierwotnego użytkowanych odcinków dróg na koszt Wykonawcy.

Wykonawca będzie usuwać na bieżąco, na własny koszt, wszelkie zanieczyszczenia, uszkodzenia spowodowane jego pojazdami na drogach publicznych oraz dojazdach do terenu budowy.

5. WYKONANIE ROBÓT

Wykonawca jest odpowiedzialny za prowadzenie robót zgodnie z warunkami umowy oraz za jakość zastosowanych materiałów i wykonywanych robót, za ich zgodność z dokumentacja projektowa, wymaganiami SST, PZJ, projektem organizacji robót opracowanym przez Wykonawcę oraz poleceniami Inżyniera/Kierownika projektu.

Wykonawca jest odpowiedzialny za stosowane metody wykonywania robót.
Wykonawca jest odpowiedzialny za dokładne wytyczenie w planie i wyznaczenie wysokości wszystkich elementów robót zgodnie z wymiarami i rzędnymi określonymi w dokumentacji projektowej lub przekazanymi na piśmie przez Inżyniera/Kierownika projektu.

Błędy popełnione przez Wykonawcę w wytyczeniu i wyznaczaniu robót zostana, usunięte przez Wykonawcę na własny koszt, z wyjąkiem, kiedy dany błąd okaże się skutkiem błędu zawartego w danych dostarczonych Wykonawcy na piśmie przez Inżyniera/ Kierownika projektu.

Sprawdzenie wytyczenia robót lub wyznaczenia wysokości przez Inżyniera/ Kierownika projektu nie zwalnia Wykonawcy od odpowiedzialności za ich dokładność.

Decyzje Inżyniera/Kierownika projektu dotyczące akceptacji lub odrzucenia materiałów i elementów robót będa oparte na wymaganiach określonych w dokumentach umowy, dokumentacji projektowej i w SST, a także w normach i wytycznych. Przy podejmowaniu decyzji Inżynier/Kierownik projektu uwzględni wyniki badań materiałów i robót, rozrzuty normalnie występujace przy produkcji i przy badaniach materiałów, doświadczenia z przeszłości, wyniki badań naukowych oraz inne czynniki wpływające na rozważana kwestię.

Polecenia Inżyniera/Kierownika projektu powinny być wykonywane przez Wykonawcę w czasie określonym przez Inżyniera/Kierownika projektu, pod groźbą zatrzymania robót. Skutki finansowe z tego tytułu poniesie Wykonawca.

6. KONTROLA JAKOŚCI ROBÓT

6.1. Program zapewnienia jakości

Wykonawca jest zobowiązany opracować i przedstawić do akceptacji Inżyniera/ Kierownika projektu program zapewnienia jakości. W programie zapewnienia jakości Wykonawca powinien określić, zamierzony sposób wykonywania robót, możliwości techniczne, kadrowe i plan organizacji robót gwarantujacy wykonanie robót zgodnie z dokumentacja projektowa, SST oraz ustaleniami.

Program zapewnienia jakości powinien zawierać:
a) część ogólna opisujacca:

- organizację wykonania robót, w tym terminy i sposób prowadzenia robót,
- organizację ruchu na budowie wraz z oznakowaniem robót,
- sposób zapewnienia bhp.,
- wykaz zespołów roboczych, ich kwalifikacje i przygotowanie praktyczne,
- wykaz osób odpowiedzialnych za jakość i terminowość wykonania poszczególnych elementów robót,
- system (sposób i procedurę) proponowanej kontroli i sterowania jakością wykonywanych robót,
- wyposażenie w sprzęt i urzadzenia do pomiarów i kontroli (opis laboratorium własnego lub laboratorium, któremu Wykonawca zamierza zlecić prowadzenie badań),
- sposób oraz formę gromadzenia wyników badań laboratoryjnych, zapis pomiarów, nastaw mechanizmów sterujących, a także wyciaganych wniosków i zastosowanych korekt w procesie technologicznym, proponowany sposób i formę przekazywania tych informacji Inżynierowi/Kierownikowi projektu;
b) część szczegółowa opisująca dla każdego asortymentu robót:
- wykaz maszyn i urzadzeń stosowanych na budowie z ich parametrami technicznymi oraz wyposażeniem w mechanizmy do sterowania i urzadzenia pomiarowo-kontrolne,
- rodzaje i ilość środków transportu oraz urządzeń do magazynowania i załadunku materiałów, spoiw, lepiszczy, kruszyw itp.,
- sposób zabezpieczenia i ochrony ładunków przed utrata ich właściwości w czasie transportu,
- sposób i procedurę pomiarów i badań (rodzaj i częstotliwość, pobieranie próbek, legalizacja i sprawdzanie urządzeń, itp.) prowadzonych podczas dostaw materiałów, wytwarzania mieszanek i wykonywania poszczególnych elementów robót,
- sposób postępowania z materiałami i robotami nie odpowiadajacymi wymaganiom.

6.2. Zasady kontroli jakości robót

Celem kontroli robót będzie takie sterowanie ich przygotowaniem i wykonaniem, aby osiągnąć założona jakość robót.

Wykonawca jest odpowiedzialny za pełną kontrolę robót i jakości materiałów. Wykonawca zapewni odpowiedni system kontroli, włączając personel, laboratorium, sprzęt, zaopatrzenie i wszystkie urządzenia niezbędne do pobierania próbek i badań materiałów oraz robót.

Przed zatwierdzeniem systemu kontroli Inżynier/Kierownik projektu może zażadać od Wykonawcy przeprowadzenia badań w celu zademonstrowania, że poziom ich wykonywania jest zadowalajacy.

Wykonawca będzie przeprowadzać pomiary i badania materiałów oraz robót z częstotliwościa zapewniajaca stwierdzenie, że roboty wykonano zgodnie z wymaganiami zawartymi w dokumentacji projektowej i SST

Minimalne wymagania co do zakresu badań i ich częstotliwość sa określone w SST, normach i wytycznych. W przypadku, gdy nie zostały one tam określone, Inżynier/ Kierownik projektu ustali jaki zakres kontroli jest konieczny, aby zapewnić wykonanie robót zgodnie z umowa.

Wykonawca dostarczy Inżynierowi/Kierownikowi projektu świadectwa, że wszystkie stosowane urządzenia i sprzęt badawczy posiadaja ważną legalizację, zostały prawidłowo wykalibrowane i odpowiadaja wymaganiom norm określajacych procedury badań.

Inżynier/Kierownik projektu będzie mieć nieograniczony dostęp do pomieszczeń laboratoryjnych, w celu ich inspekcji.

Inżynier/Kierownik projektu będzie przekazywać Wykonawcy pisemne informacje o jakichkolwiek niedociagnięciach dotyczących urzadzeń laboratoryjnych, sprzętu, zaopatrzenia laboratorium, pracy personelu lub metod badawczych. Jeżeli niedociagnięcia te będą tak poważne, że mogą wpłynąć ujemnie na wyniki badań, Inżynier/Kierownik projektu natychmiast wstrzyma użycie do robót badanych materiałów i dopuści je do użycia dopiero wtedy, gdy niedociagnięcia w pracy laboratorium Wykonawcy zostaną usunięte i stwierdzona zostanie odpowiednia jakość tych materiałów.

Wszystkie koszty związane z organizowaniem i prowadzeniem badań materiałów ponosi Wykonawca.

6.3. Pobieranie próbek

Próbki będą pobierane losowo. Zaleca się stosowanie statystycznych metod pobierania próbek, opartych na zasadzie, że wszystkie jednostkowe elementy produkcji moga być z jednakowym prawdopodobieństwem wytypowane do badań.

Inżynier/Kierownik projektu będzie mieć zapewnioną możliwość udziału w pobieraniu próbek.

Pojemniki do pobierania próbek będa dostarczone przez Wykonawcę i zatwierdzone przez Inżyniera/Kierownika projektu. Próbki dostarczone przez Wykonawcę do badań wykonywanych przez Inżyniera/Kierownik projektu będą odpowiednio opisane i oznakowane, w sposób zaakceptowany przez Inżyniera/Kierownika projektu.

Na zlecenie Inżyniera/Kierownika projektu Wykonawca będzie przeprowadzać dodatkowe badania tych materiałów, które budzą wątpliwości co do jakości, o ile kwestionowane materiały nie zostana przez Wykonawcę usunięte lub ulepszone z własnej woli. Koszty tych dodatkowych badań pokrywa Wykonawca tylko w przypadku stwierdzenia usterek; w przeciwnym przypadku koszty te pokrywa Zamawiajacy.

6.4. Badania i pomiary

Wszystkie badania i pomiary będa przeprowadzone zgodnie z wymaganiami norm. W przypadku, gdy normy nie obejmuja jakiegokolwiek badania wymaganego w SST, stosować można wytyczne krajowe, albo inne procedury, zaakceptowane przez Inżyniera/ Kierownika projektu.

Przed przystąpieniem do pomiarów lub badań, Wykonawca powiadomi Inżyniera/ Kierownika projektu o rodzaju, miejscu i terminie pomiaru lub badania. Po wykonaniu pomiaru lub badania, Wykonawca przedstawi na piśmie ich wyniki do akceptacji Inżyniera/ Kierownika projektu.

6.5. Raporty \mathbf{z} badań

Wykonawca będzie przekazywać Inżynierowi/Kierownikowi projektu kopie raportów z wynikami badań jak najszybciej, nie później jednak niż w terminie określonym w programie zapewnienia jakości.

Wyniki badań (kopie) będa przekazywane Inżynierowi/Kierownikowi projektu na formularzach według dostarczonego przez niego wzoru lub innych, przez niego zaaprobowanych.

6.6. Badania prowadzone przez Inżyniera/Kierownika projektu

Inżynier/Kierownik projektu jest uprawniony do dokonywania kontroli, pobierania próbek i badania materiałów w miejscu ich wytwarzania/pozyskiwania, a Wykonawca i producent materiałów powinien udzielić mu niezbędnej pomocy.

Inżynier/Kierownik projektu, dokonujac weryfikacji systemu kontroli robót prowadzonego przez Wykonawce, poprzez między innymi swoje badania, będzie oceniać zgodność materiałów i robót z wymaganiami SST na podstawie wyników własnych badań kontrolnych jak i wyników badań dostarczonych przez Wykonawcę.

Inżynier/Kierownik projektu powinien pobierać próbki materiałów i prowadzić badania niezależnie od Wykonawcy, na swój koszt. Jeżeli wyniki tych badań wykaża, że raporty Wykonawcy sa niewiarygodne, to Inżynier/Kierownik projektu oprze się wyłacznie na własnych badaniach przy ocenie zgodności materiałów i robót z dokumentacja projektowa i SST. Może również zlecić, sam lub poprzez Wykonawcę, przeprowadzenie powtórnych lub dodatkowych badań niezależnemu laboratorium. W takim przypadku całkowite koszty powtórnych lub dodatkowych badań i pobierania próbek poniesione zostana przez Wykonawcę.

6.7. Certyfikaty i deklaracje

Inżynier/Kierownik projektu może dopuścić do użycia tylko te materiały, które posiadaja:

1. certyfikat na znak bezpieczeństwa wykazujacy, że zapewniono zgodność z kryteriami technicznymi określonymi na podstawie Polskich Norm, aprobat technicznych oraz właściwych przepisów i dokumentów technicznych,
2. deklarację zgodności lub certyfikat zgodności z:

- Polska Norma lub
- aprobata techniczna, w przypadku wyrobów, dla których nie ustanowiono Polskiej Normy, jeżeli nie są objęte certyfikacja określoną w pkt 1
i które spełniaja wymogi SST.
W przypadku materiałów, dla których ww. dokumenty sa wymagane przez SST, każda partia dostarczona do robót będzie posiadać te dokumenty, określajace w sposób jednoznaczny jej cechy.

Produkty przemysłowe muszą posiadać ww. dokumenty wydane przez producenta, a w razie potrzeby poparte wynikami badań wykonanych przez niego. Kopie wyników tych badań będa dostarczone przez Wykonawcę Inżynierowi/Kierownikowi projektu.

Jakiekolwiek materiały, które nie spełniaja tych wymagań będą odrzucone.

6.8. Dokumenty budowy

(1) Dziennik budowy

Dziennik budowy jest wymaganym dokumentem prawnym obowiazujacym Zamawiającego i Wykonawcę w okresie od przekazania Wykonawcy terenu budowy do końca okresu gwarancyjnego. Odpowiedzialność za prowadzenie dziennika budowy zgodnie z obowiązującymi przepisami [2] spoczywa na Wykonawcy.

Zapisy w dzienniku budowy będą dokonywane na bieżąco i będą dotyczyć przebiegu robót, stanu bezpieczeństwa ludzi i mienia oraz technicznej i gospodarczej strony budowy.

Każdy zapis w dzienniku budowy będzie opatrzony data jego dokonania, podpisem osoby, która dokonała zapisu, z podaniem jej imienia i nazwiska oraz stanowiska służbowego. Zapisy będa czytelne, dokonane trwałą technika, w porządku chronologicznym, bezpośrednio jeden pod drugim, bez przerw.

Załączone do dziennika budowy protokoły i inne dokumenty będa oznaczone kolejnym numerem załącznika i opatrzone data i podpisem Wykonawcy i Inżyniera/ Kierownika projektu.

Do dziennika budowy należy wpisywać w szczególności:

- datę przekazania Wykonawcy terenu budowy,
- datę przekazania przez Zamawiajacego dokumentacji projektowej,
- datę uzgodnienia przez Inżyniera/Kierownika projektu programu zapewnienia jakości i harmonogramów robót,
- terminy rozpoczęcia i zakończenia poszczególnych elementów robót,
- przebieg robót, trudności i przeszkody w ich prowadzeniu, okresy i przyczyny przerw w robotach,
- uwagi i polecenia Inżyniera/Kierownika projektu,
- daty zarzadzenia wstrzymania robót, z podaniem powodu,
- zgłoszenia i daty odbiorów robót zanikających i ulegajacych zakryciu, częściowych ostatecznych odbiorów robót,
- wyjaśnienia, uwagi i propozycje Wykonawcy,
- stan pogody i temperaturę powietrza w okresie wykonywania robót podlegajacych ograniczeniom lub wymaganiom szczególnym w związku z warunkami klimatycznymi,
- zgodność rzeczywistych warunków geotechnicznych z ich opisem w dokumentacji projektowej,
- dane dotyczące czynności geodezyjnych (pomiarowych) dokonywanych przed i w trakcie wykonywania robót,
- dane dotyczące sposobu wykonywania zabezpieczenia robót,
- dane dotyczące jakości materiałów, pobierania próbek oraz wyniki przeprowadzonych badań z podaniem, kto je przeprowadzał,
- wyniki prób poszczególnych elementów budowli z podaniem, kto je przeprowadzał,
- inne istotne informacje o przebiegu robót.

Propozycje, uwagi i wyjaśnienia Wykonawcy, wpisane do dziennika budowy będą przedłożone Inżynierowi/Kierownikowi projektu do ustosunkowania się.

Decyzje Inżyniera/Kierownika projektu wpisane do dziennika budowy Wykonawca podpisuje z zaznaczeniem ich przyjęcia lub zajęciem stanowiska.

Wpis projektanta do dziennika budowy obliguje Inżyniera/Kierownika projektu do ustosunkowania się. Projektant nie jest jednak stroną umowy i nie ma uprawnień do wydawania poleceń Wykonawcy robót.
(2) Książka obmiarów

Książka obmiarów stanowi dokument pozwalajacy na rozliczenie faktycznego postępu każdego z elementów robót. Obmiary wykonanych robót przeprowadza się w sposób ciągły w jednostkach przyjętych w kosztorysie i wpisuje do książki obmiarów.
(3) Dokumenty laboratoryjne

Dzienniki laboratoryjne, deklaracje zgodności lub certyfikaty zgodności materiałów, orzeczenia o jakości materiałów, recepty robocze i kontrolne wyniki badań Wykonawcy będą gromadzone w formie uzgodnionej w programie zapewnienia jakości. Dokumenty te stanowią załączniki do odbioru robót. Winny być udostępnione na każde życzenie Inżyniera/Kierownika projektu.
(4) Pozostałe dokumenty budowy

Do dokumentów budowy zalicza się, oprócz wymienionych w punktach (1) - (3) następujace dokumenty:
a) pozwolenie na realizację zadania budowlanego,
b) protokoły przekazania terenu budowy,
c) umowy cywilno-prawne z osobami trzecimi i inne umowy cywilno-prawne,
d) protokoły odbioru robót,
e) protokoły z narad i ustaleń,
f) korespondencję na budowie.
(5) Przechowywanie dokumentów budowy

Dokumenty budowy będą przechowywane na terenie budowy w miejscu odpowiednio zabezpieczonym.

Zaginięcie któregokolwiek z dokumentów budowy spowoduje jego natychmiastowe odtworzenie w formie przewidzianej prawem.

Wszelkie dokumenty budowy będą zawsze dostępne dla Inżyniera/Kierownika projektu i przedstawiane do wglądu na życzenie Zamawiajacego.

7. OBMIAR ROBÓT

7.1. Ogólne zasady obmiaru robót

Obmiar robót będzie określać faktyczny zakres wykonywanych robót zgodnie z dokumentacja projektową i SST, w jednostkach ustalonych w kosztorysie.

Obmiaru robót dokonuje Wykonawca po pisemnym powiadomieniu Inżyniera/ Kierownika projektu o zakresie obmierzanych robót i terminie obmiaru, co najmniej na 3 dni przed tym terminem. Wyniki obmiaru będą wpisane do książki obmiarów.

Jakikolwiek błąd lub przeoczenie (opuszczenie) w ilościach podanych w ślepym kosztorysie lub gdzie indziej w SST nie zwalnia Wykonawcy od obowiązku ukończenia wszystkich robót. Błędne dane zostana poprawione wg instrukcji Inżyniera/Kierownika projektu na piśmie.

Obmiar gotowych robót będzie przeprowadzony z częstością wymaganą do celu miesięcznej płatności na rzecz Wykonawcy lub w innym czasie określonym w umowie lub oczekiwanym przez Wykonawcę i Inżyniera/Kierownika projektu.

7.2. Zasady określania ilości robót i materiałów

Długości i odległości pomiędzy wyszczególnionymi punktami skrajnymi będą obmierzone poziomo wzdłuż linii osiowej.

Jeśli SST właściwe dla danych robót nie wymagaja tego inaczej, objętości będą wyliczone w m^{3} jako długość pomnożona przez średni przekrój.

Ilości, które mają być obmierzone wagowo, będą ważone w tonach lub kilogramach zgodnie z wymaganiami SST.

7.3. Urządzenia i sprzęt pomiarowy

Wszystkie urządzenia i sprzęt pomiarowy, stosowany w czasie obmiaru robót będa zaakceptowane przez Inżyniera/Kierownika projektu.

Urządzenia i sprzęt pomiarowy zostaną dostarczone przez Wykonawcę. Jeżeli urządzenia te lub sprzęt wymagaja badań atestujących to Wykonawca będzie posiadać ważne świadectwa legalizacji.

Wszystkie urządzenia pomiarowe będą przez Wykonawcę utrzymywane w dobrym stanie, w całym okresie trwania robót.

7.4. Wagi i zasady ważenia

Wykonawca dostarczy i zainstaluje urządzenia wagowe odpowiadające odnośnym wymaganiom SST Będzie utrzymywać to wyposażenie zapewniając w sposób ciagły zachowanie dokładności wg norm zatwierdzonych przez Inżyniera/Kierownika projektu.

7.5. Czas przeprowadzenia obmiaru

Obmiary będą przeprowadzone przed częściowym lub ostatecznym odbiorem odcinków robót, a także w przypadku występowania dłuższej przerwy w robotach.

Obmiar robót zanikajacych przeprowadza się w czasie ich wykonywania.
Obmiar robót podlegajacych zakryciu przeprowadza się przed ich zakryciem.
Roboty pomiarowe do obmiaru oraz nieodzowne obliczenia będa wykonane w sposób zrozumiały i jednoznaczny.

Wymiary skomplikowanych powierzchni lub objętości będa uzupełnione odpowiednimi szkicami umieszczonymi na karcie książki obmiarów. W razie braku miejsca szkice mogą być dołączone w formie oddzielnego załącznika do książki obmiarów, którego wzór zostanie uzgodniony z Inżynierem/Kierownikiem projektu.

8. ODBIÓR ROBÓT

8.1. Rodzaje odbiorów robót

W zależności od ustaleń odpowiednich SST, roboty podlegają następującym etapom odbioru:
a) odbiorowi robót zanikających i ulegających zakryciu,
b) odbiorowi częściowemu,
c) odbiorowi ostatecznemu,
d) odbiorowi pogwarancyjnemu.

8.2. Odbiór robót zanikających i ulegających zakryciu

Odbiór robót zanikajacych i ulegajacych zakryciu polega na finalnej ocenie ilości i jakości wykonywanych robót, które w dalszym procesie realizacji ulegna zakryciu.

Odbiór robót zanikających i ulegających zakryciu będzie dokonany w czasie umożliwiającym wykonanie ewentualnych korekt i poprawek bez hamowania ogólnego postępu robót.

Odbioru robót dokonuje Inżynier/Kierownik projektu.
Gotowość danej części robót do odbioru zgłasza Wykonawca wpisem do dziennika budowy i jednoczesnym powiadomieniem Inżyniera/Kierownika projektu. Odbiór będzie przeprowadzony niezwłocznie, nie później jednak niż w ciagu 3 dni od daty zgłoszenia wpisem do dziennika budowy i powiadomienia o tym fakcie Inżyniera/Kierownika projektu.

Jakość i ilość robót ulegajacych zakryciu ocenia Inżynier/Kierownik projektu na podstawie dokumentów zawierajacych komplet wyników badań laboratoryjnych i w oparciu o przeprowadzone pomiary, w konfrontacji z dokumentacja projektowa, SST i uprzednimi ustaleniami.

8.3. Odbiór częściowy

Odbiór częściowy polega na ocenie ilości i jakości wykonanych części robót. Odbioru częściowego robót dokonuje się wg zasad jak przy odbiorze ostatecznym robót. Odbioru robót dokonuje Inżynier/Kierownik projektu.

8.4. Odbiór ostateczny robót

8.4.1. Zasady odbioru ostatecznego robót

Odbiór ostateczny polega na finalnej ocenie rzeczywistego wykonania robót w odniesieniu do ich ilości, jakości i wartości.

Całkowite zakończenie robót oraz gotowość do odbioru ostatecznego będzie stwierdzona przez Wykonawcę wpisem do dziennika budowy z bezzwłocznym powiadomieniem na piśmie o tym fakcie Inżyniera/Kierownika projektu.

Odbiór ostateczny robót nastapi w terminie ustalonym w dokumentach umowy, licząc od dnia potwierdzenia przez Inżyniera/Kierownika projektu zakończenia robót i przyjęcia dokumentów, o których mowa w punkcie 8.4.2.

Odbioru ostatecznego robót dokona komisja wyznaczona przez Zamawiajacego w obecności Inżyniera/Kierownika projektu i Wykonawcy. Komisja odbierajaca roboty dokona ich oceny jakościowej na podstawie przedłożonych dokumentów, wyników badań i pomiarów, ocenie wizualnej oraz zgodności wykonania robót z dokumentacja projektową i SST.

W toku odbioru ostatecznego robót komisja zapozna się z realizacja ustaleń przyjętych w trakcie odbiorów robót zanikajacych i ulegajacych zakryciu, zwłaszcza w zakresie wykonania robót uzupełniajacych i robót poprawkowych.

W przypadkach niewykonania wyznaczonych robót poprawkowych lub robót uzupełniajacych w warstwie ścieralnej lub robotach wykończeniowych, komisja przerwie swoje czynności i ustali nowy termin odbioru ostatecznego.

W przypadku stwierdzenia przez komisję, że jakość wykonywanych robót w poszczególnych asortymentach nieznacznie odbiega od wymaganej dokumentacja projektowa i SST z uwzględnieniem tolerancji i nie ma większego wpływu na cechy eksploatacyjne obiektu i bezpieczeństwo ruchu, komisja dokona potraceń, oceniajac pomniejszona wartość wykonywanych robót w stosunku do wymagań przyjętych w dokumentach umowy.

8.4.2. Dokumenty do odbioru ostatecznego

Podstawowym dokumentem do dokonania odbioru ostatecznego robót jest protokół odbioru ostatecznego robót sporządzony wg wzoru ustalonego przez Zamawiajacego.

Do odbioru ostatecznego Wykonawca jest zobowiązany przygotować następujące dokumenty:

1. dokumentację projektową podstawową z naniesionymi zmianami oraz dodatkowa, jeśli została sporzadzona w trakcie realizacji umowy,
2. szczegółowe specyfikacje techniczne (podstawowe z dokumentów umowy i ew. uzupełniające lub zamienne),
3. recepty i ustalenia technologiczne,
4. dzienniki budowy i książki obmiarów (oryginały),
5. wyniki pomiarów kontrolnych oraz badań i oznaczeń laboratoryjnych, zgodne z SST i ew. PZJ,
6. deklaracje zgodności lub certyfikaty zgodności wbudowanych materiałów zgodnie z SST i ew. PZJ,
7. opinię technologiczną sporządzoną na podstawie wszystkich wyników badań i pomiarów załączonych do dokumentów odbioru, wykonanych zgodnie z SST i PZJ,
8. rysunki (dokumentacje) na wykonanie robót towarzyszących (np. na przełożenie linii telefonicznej, energetycznej, gazowej, oświetlenia itp.) oraz protokoły odbioru i przekazania tych robót właścicielom urządzeń,
9. geodezyjną inwentaryzację powykonawczą robót i sieci uzbrojenia terenu,
10. kopię mapy zasadniczej powstałej w wyniku geodezyjnej inwentaryzacji powykonawczej.

W przypadku, gdy wg komisji, roboty pod względem przygotowania dokumentacyjnego nie będa gotowe do odbioru ostatecznego, komisja w porozumieniu z Wykonawca wyznaczy ponowny termin odbioru ostatecznego robót.

Wszystkie zarządzone przez komisję roboty poprawkowe lub uzupełniajace będą zestawione wg wzoru ustalonego przez Zamawiajacego.

Termin wykonania robót poprawkowych i robót uzupełniajacych wyznaczy komisja.

8.5. Odbiór pogwarancyjny

Odbiór pogwarancyjny polega na ocenie wykonanych robót związanych z usunięciem wad stwierdzonych przy odbiorze ostatecznym i zaistniałych w okresie gwarancyjnym.

Odbiór pogwarancyjny będzie dokonany na podstawie oceny wizualnej obiektu z uwzględnieniem zasad opisanych w punkcie 8.4 „Odbiór ostateczny robót".

9. PODSTAWA PŁATNOŚCI

9.1. Ustalenia ogólne

Podstawa płatności jest cena jednostkowa skalkulowana przez Wykonawcę za jednostkę obmiarową ustaloną dla danej pozycji kosztorysu.

Dla pozycji kosztorysowych wycenionych ryczałtowo podstawa płatności jest wartość (kwota) podana przez Wykonawcę w danej pozycji kosztorysu.

Cena jednostkowa lub kwota ryczałtowa pozycji kosztorysowej będzie uwzględniać wszystkie czynności, wymagania i badania składające się na jej wykonanie, określone dla tej roboty w SST i w dokumentacji projektowej.

Ceny jednostkowe lub kwoty ryczałtowe robót będą obejmować:

- robociznę bezpośrednią wraz z towarzyszącymi kosztami,
- wartość zużytych materiałów wraz z kosztami zakupu, magazynowania, ewentualnych ubytków i transportu na teren budowy,
- wartość pracy sprzętu wraz z towarzyszacymi kosztami,
- koszty pośrednie, zysk kalkulacyjny i ryzyko,
- podatki obliczone zgodnie z obowiazującymi przepisami.

Do cen jednostkowych nie należy wliczać podatku VAT.

9.2. Warunki umowy i wymagania ogólne D-00.00.00

Koszt dostosowania się do wymagań warunków umowy i wymagań ogólnych zawartych w D00.00 .00 obejmuje wszystkie warunki określone w ww. dokumentach, a nie wyszczególnione w kosztorysie.

9.3. Objazdy, przejazdy i organizacja ruchu

Koszt wybudowania objazdów/przejazdów i organizacji ruchu obejmuje:
(a)opracowanie oraz uzgodnienie z Inżynierem/Kierownikiem projektu i odpowiednimi instytucjami projektu organizacji ruchu na czas trwania budowy, wraz z dostarczeniem kopii projektu Inżynierowi/Kierownikowi projektu i wprowadzaniem dalszych zmian i uzgodnień wynikajacych z postępu robót,
(b)ustawienie tymczasowego oznakowania i oświetlenia zgodnie z wymaganiami bezpieczeństwa ruchu,
(c) opłaty/dzierżawy terenu,
(d)przygotowanie terenu,
(e)konstrukcję tymczasowej nawierzchni, ramp, chodników, krawężników, barier, oznakowań i drenażu,
(f) tymczasową przebudowę urządzeń obcych.

Koszt utrzymania objazdów/przejazdów i organizacji ruchu obejmuje:
(a)oczyszczanie, przestawienie, przykrycie i usunięcie tymczasowych oznakowań pionowych, poziomych, barier i świateł,
(b)utrzymanie płynności ruchu publicznego.

Koszt likwidacji objazdów/przejazdów i organizacji ruchu obejmuje:
(a)usunięcie wbudowanych materiałów i oznakowania,
(b)doprowadzenie terenu do stanu pierwotnego.

10. PRZEPISY ZWIAZANE

1. Ustawa z dnia 7 lipca 1994 r. - Prawo budowlane (Dz. U. Nr 89, poz. 414 z późniejszymi zmianami).
2. Zarządzenie Ministra Infrastruktury z dnia 19 listopada 2001 r. w sprawie dziennika budowy, montażu i rozbiórki oraz tablicy informacyjnej (Dz. U. Nr 138, poz. 1555).
3. Ustawa z dnia 21 marca 1985 r. o drogach publicznych (Dz. U. Nr 14, poz. 60 z późniejszymi zmianami).

D-01.02.04
ROZBIÓRKA ELEMENTÓW DRÓG

1. WSTĘP

1.1.Przedmiot SST

Przedmiotem niniejszej szczegółowej specyfikacji technicznej (SST) sa wymagania dotyczące wykonania i odbioru robót zwiazanych z rozbiórką elementów dróg w trakcie robót związanych z przebudowa „Płyty Rynku" w Obrzycku.

1.2. Zakres stosowania SST

Szczegółowa specyfikacja techniczna jest stosowana jako dokument przetargowy i kontraktowy przy zlecaniu realizacji robót wymienionych w pkt. 1.1.

1.3. Zakres robót objętych OST

Ustalenia zawarte w niniejszej specyfikacji dotyczą zasad prowadzenia robót związanych z rozbiórka:

- warstw nawierzchni z płyt betonowych gr. 15 cm oraz bitumicznej,
- krawężników, obrzeży i oporników,
- chodników,
- znaków drogowych,

1.4. Określenia podstawowe

Stosowane określenia podstawowe sa zgodne z obowiazujacymi, odpowiednimi polskimi normami oraz z definicjami podanymi w SST D-00.00.00 „Wymagania ogólne" pkt 1.4.

1.5. Ogólne wymagania dotyczące robót

Ogólne wymagania dotyczące robót podano w SST D-00.00.00 „Wymagania ogólne" pkt 1.5.

2. MATERIAŁY

2.1. Ogólne wymagania dotyczące materiałów

Ogólne wymagania dotyczące materiałów, ich pozyskiwania i składowania, podano w SST D00.00.00 "Wymagania ogólne" pkt 2.

3. SPRZĘT

3.1. Ogólne wymagania dotyczące sprzętu

Ogólne wymagania dotyczące sprzętu podano w SST D-00.00.00 „Wymagania ogólne" pkt 3.

3.2. Sprzęt do rozbiórki

Do wykonania robót związanych z rozbiórka elementów dróg, ogrodzeń i przepustów może być wykorzystany sprzęt podany poniżej, lub inny zaakceptowany przez Inżyniera:

- spycharki,
- ładowarki,
- samochody ciężarowe,
- zrywarki,
- młoty pneumatyczne,
- piły mechaniczne,
- frezarki nawierzchni,
- koparki.

4. TRANSPORT

4.1. Ogólne wymagania dotyczace transportu

Ogólne wymagania dotyczące transportu podano w SST D-00.00.00 „Wymagania ogólne" pkt 4.

4.2. Transport materiałów z rozbiórki

Materiał z rozbiórki można przewozić dowolnym środkiem transportu w miejsce wskazane przez Zamawiajacego na odległość do 5 km .

5. WYKONANIE ROBÓT

5.1. Ogólne zasady wykonania robót

Ogólne zasady wykonania robót podano w SST D-00.00.00 „Wymagania ogólne" pkt 5.

5.2. Wykonanie robót rozbiórkowych

Roboty rozbiórkowe elementów dróg obejmuja usunięcie z terenu budowy wszystkich elementów wymienionych w pkt 1.3, zgodnie z dokumentacja projektowa, SST lub wskazanych przez Inżyniera.

Jeśli dokumentacja projektowa nie zawiera dokumentacji inwentaryzacyjnej lub/i rozbiórkowej, Inżynier może polecić Wykonawcy sporządzenie takiej dokumentacji, w której zostanie określony przewidziany odzysk materiałów.

Roboty rozbiórkowe można wykonywać mechanicznie lub ręcznie w sposób określony w SST lub przez Inżyniera.

Wszystkie elementy możliwe do powtórnego wykorzystania powinny być usuwane bez powodowania zbędnych uszkodzeń. O ile uzyskane elementy nie staja się własnością Wykonawcy, powinien on przewieźć je na miejsce określone w SST lub wskazane przez Inżyniera.

Elementy i materiały, które zgodnie z SST stają się własnością Wykonawcy, powinny być usunięte z terenu budowy.

Doły (wykopy) powstałe po rozbiórce elementów dróg znajdujace się w miejscach, gdzie zgodnie z dokumentacja projektową będą wykonane wykopy drogowe, powinny być tymczasowo zabezpieczone. W szczególności należy zapobiec gromadzeniu się w nich wody opadowej.

Doły w miejscach, gdzie nie przewiduje się wykonania wykopów drogowych należy wypełnić, warstwami, odpowiednim gruntem do poziomu otaczającego terenu i zagęścić zgodnie z wymaganiami określonymi w SST D-02.00.00 „Roboty ziemne".

6. KONTROLA JAKOŚCI ROBÓT

6.1. Ogólne zasady kontroli jakości robót

Ogólne zasady kontroli jakości robót podano w SST D-00.00.00 „Wymagania ogólne" pkt 6.

6.2. Kontrola jakości robót rozbiórkowych

Kontrola jakości robót polega na wizualnej ocenie kompletności wykonanych robót rozbiórkowych oraz sprawdzeniu stopnia uszkodzenia elementów przewidzianych do powtórnego wykorzystania.

Zagęszczenie gruntu wypełniajacego ewentualne doły po usuniętych elementach nawierzchni, powinno spełniać odpowiednie wymagania określone w SST D-02.00.00 „Roboty ziemne".

7. OBMIAR ROBÓT

7.1. Ogólne zasady obmiaru robót

Ogólne zasady obmiaru robót podano w SST D-00.00.00 „Wymagania ogólne" pkt 7.

7.2. Jednostka obmiarowa

Jednostką obmiarową robót związanych z rozbiórką elementów dróg i ogrodzeń jest:

- dla nawierzchni i chodnika - m^{2} (metr kwadratowy),
- dla krawężnika, opornika, obrzeża- m (metr),
- dla znaków drogowych - szt. (sztuka),

8. ODBIÓR ROBÓT

Ogólne zasady odbioru robót podano w SST D-00.00.00 „Wymagania ogólne"
pkt 8.
9. PODSTAWA PŁATNOŚCI

9.1. Ogólne ustalenia dotyczące podstawy płatności

Ogólne ustalenia dotyczące podstawy płatności podano w SST D-00.00.00 „Wymagania ogólne" pkt 9 .

9.2. Cena jednostki obmiarowej

Cena wykonania robót obejmuje:
a) dla rozbiórki warstw nawierzchni:

- wyznaczenie powierzchni przeznaczonej do rozbiórki,
- rozkucie i zerwanie nawierzchni,
- ew. przesortowanie materiału uzyskanego z rozbiórki, w celu ponownego jej użycia, z ułożeniem na poboczu,
- załadunek i wywiezienie materiałów z rozbiórki,
- wyrównanie podłoża i uporządkowanie terenu rozbiórki;
b) dla rozbiórki krawężników, obrzeży i oporników:
- odkopanie krawężników, obrzeży i oporników wraz z wyjęciem i oczyszczeniem,
- zerwanie podsypki cementowo-piaskowej i ew. ław,
- załadunek i wywiezienie materiału z rozbiórki,
- wyrównanie podłoża i uporządkowanie terenu rozbiórki;
c) dla rozbiórki chodników:
- ręczne wyjęcie płyt chodnikowych, lub rozkucie i zerwanie innych materiałów chodnikowych,
- ew. przesortowanie materiału uzyskanego z rozbiórki w celu ponownego jego użycia, z ułożeniem na poboczu,
- zerwanie podsypki cementowo-piaskowej,
- załadunek i wywiezienie materiałów z rozbiórki,
- wyrównanie podłoża i uporządkowanie terenu rozbiórki;
d) dla rozbiórki znaków drogowych:
- demontaż tablic znaków drogowych ze słupków,
- odkopanie i wydobycie słupków,
- zasypanie dołów po słupkach wraz z zagęszczeniem do uzyskania Is $\geq 1,00 \mathrm{wg}$ BN-77/8931-12 [9],
- załadunek i wywiezienie materiałów z rozbiórki,
- uporzadkowanie terenu rozbiórki;

10. PRZEPISY ZWIAZANE

Normy

1. PN-D-95017
2. PN-D-96000
3. PN-D-96002
4. PN-H-74219

Surowiec drzewny. Drewno tartaczne iglaste.
Tarcica iglasta ogólnego przeznaczenia
Tarcica liściasta ogólnego przeznaczenia
Rury stalowe bez szwu walcowane na goraco ogólnego stosowania
5. PN-H-74220 Rury stalowe bez szwu ciagnione i walcowane na zimno ogólnego
6. PN-H-93401
7. PN-H-93402
8. $\mathrm{BN}-87 / 5028-12$
9. $\mathrm{BN}-77 / 8931-12$
przeznaczenia
Stal walcowana. Kątowniki równoramienne
Kątowniki nierównoramienne stalowe walcowane na goraco
Gwoździe budowlane. Gwoździe z
trzpieniem gładkim, okragłym i
kwadratowym
Oznaczenie wskaźnika zagęszczenia gruntu.

D-04.01.01

KORYTO WRAZ Z PROFILOWANIEM I ZAGĘSZCZANIEM PODŁOŻA

1. WSTĘP

1.1. Przedmiot SST

Przedmiotem niniejszej szczegółowej specyfikacji technicznej (SST) sa wymagania dotyczące wykonania i odbioru robót związanych z wykonywaniem koryta wraz z profilowaniem i zagęszczaniem podłoża gruntowego w trakcie robót związanych z przebudową „Płyty Rynku" w Obrzycku.

1.2. Zakres stosowania SST

Szczegółowa specyfikacja techniczna jest stosowana jako dokument przetargowy i kontraktowy przy zlecaniu realizacji robót wymienionych w pkt. 1.1.

1.3. Zakres robót objętych OST

Ustalenia zawarte w niniejszej specyfikacji dotyczą zasad prowadzenia robót związanych z wykonaniem koryta głebokości $10,20,30 \mathrm{~cm}$ przeznaczonego do ułożenia konstrukcji nawierzchni.

1.4. Określenia podstawowe

Określenia podstawowe sa zgodne z obowiązującymi, odpowiednimi polskimi normami i definicjami podanymi w SST D-00.00.00 „Wymagania ogólne" pkt 1.4.

1.5. Ogólne wymagania dotyczące robót

Ogólne wymagania dotyczące robót podano w SST D-00.00.00 „Wymagania ogólne" pkt 1.5.

2. MATERIAŁY

Nie występuja.

3. SPRZĘT

3.1. Ogólne wymagania dotyczące sprzętu

Ogólne wymagania dotyczące sprzętu podano w SST D-00.00.00 „Wymagania ogólne" pkt 3.

3.2. Sprzęt do wykonania robót

Wykonawca przystępujacy do wykonania koryta i profilowania podłoża powinien wykazać się możliwością korzystania z następującego sprzętu:

- równiarek lub spycharek uniwersalnych z ukośnie ustawianym lemieszem; Inżynier może dopuścić wykonanie koryta i profilowanie podłoża z zastosowaniem spycharki z lemieszem ustawionym prostopadle do kierunku pracy maszyny,
- koparek z czerpakami profilowymi (przy wykonywaniu waskich koryt),
- walców statycznych, wibracyjnych lub płyt wibracyjnych.

Stosowany sprzęt nie może spowodować niekorzystnego wpływu na właściwości gruntu podłoża.

4. TRANSPORT

4.1. Ogólne wymagania dotyczące transportu

Ogólne wymagania dotyczace transportu podano w SST D-00.00.00 „Wymagania ogólne" pkt
4.

4.2. Transport materiałów

Wymagania dotyczące transportu materiałów podano w SST D-04.02.01,
D04.02.02, D-04.03.01 pkt 4.

5. WYKONANIE ROBÓT

5.1. Ogólne zasady wykonania robót

Ogólne zasady wykonania robót podano w SST D-00.00.00 „Wymagania ogólne" pkt 5.

5.2. Warunki przystapienia do robót

Wykonawca powinien przystapić do wykonania koryta oraz profilowania i zagęszczenia podłoża bezpośrednio przed rozpoczęciem robót związanych z wykonaniem warstw nawierzchni. Wcześniejsze przystapienie do wykonania koryta oraz profilowania i zagęszczania podłoża,jest możliwe wyłącznie za zgodą Inżyniera, w korzystnych warunkach atmosferycznych.

W wykonanym korycie oraz po wyprofilowanym i zagęszczonym podłożu nie może odbywać się ruch budowlany, niezwiązany bezpośrednio z wykonaniem pierwszej warstwy nawierzchni.

5.3. Wykonanie koryta

Paliki lub szpilki do prawidłowego ukształtowania koryta w planie i profilu powinny być wcześniej przygotowane.

Paliki lub szpilki należy ustawiać w osi drogi i w rzędach równoległych do osi drogi lub w inny sposób zaakceptowany przez Inżyniera. Rozmieszczenie palików lub szpilek powinno umożliwiać naciągnięcie sznurków lub linek do wytyczenia robót w odstępach nie większych niż co 10 metrów.

Rodzaj sprzętu, a w szczególności jego moc należy dostosować do rodzaju gruntu, w którym prowadzone sa roboty i do trudności jego odspojenia.

Koryto można wykonywać ręcznie, gdy jego szerokość nie pozwala na zastosowanie maszyn, na przykład na poszerzeniach lub w przypadku robót o małym zakresie. Sposób wykonania musi być zaakceptowany przez Inżyniera.

Grunt odspojony w czasie wykonywania koryta powinien być wykorzystany zgodnie z ustaleniami dokumentacji projektowej i SST, tj. odwieziony na odkład w miejsce wskazane przez Inżyniera.

Profilowanie i zagęszczenie podłoża należy wykonać zgodnie z zasadami określonymi w pkt

5.4.

5.4. Profilowanie i zagęszczanie podłoża

Przed przystapieniem do profilowania podłoże powinno być oczyszczone ze wszelkich zanieczyszczeń.

Po oczyszczeniu powierzchni podłoża należy sprawdzić, czy istniejace rzędne terenu umożliwiaja uzyskanie po profilowaniu zaprojektowanych rzędnych podłoża. Zaleca się, aby rzędne terenu przed profilowaniem były o co najmniej 5 cm wyższe niż projektowane rzędne podłoża.

Jeżeli powyższy warunek nie jest spełniony i występuja zaniżenia poziomu w podłożu przewidzianym do profilowania, Wykonawca powinien spulchnić podłoże na głębokość zaakceptowana przez Inżyniera, dowieźć dodatkowy grunt spełniajacy wymagania obowiazujące dla górnej strefy korpusu, w ilości koniecznej do uzyskania wymaganych rzędnych wysokościowych i zagęścić warstwę do uzyskania wartości wskaźnika zagęszczenia, określonych w tablicy 1.

Do profilowania podłoża należy stosować równiarki. Ścięty grunt powinien być wykorzystany w robotach ziemnych lub w inny sposób zaakceptowany przez Inżyniera.

Bezpośrednio po profilowaniu podłoża należy przystapić do jego zagęszczania. Zagęszczanie podłoża należy kontynuować do osiagnięcia wskaźnika zagęszczenia nie mniejszego od podanego w tablicy 1. Wskaźnik zagęszczenia należy określać zgodnie z BN-77/8931-12 [5].

Tablica 1. Minimalne wartości wskaźnika zagęszczenia podłoża ($\left(I_{s}\right)$

Strefa	Minimalna wartość I_{s} dla:	
	Autostrad i dróg Przebudowa „Plyty Rynku" w Obrzycku	Innych dróg

$\left.\begin{array}{|l|c|c|c|} & \text { korpusu } & \text { ekspresowych } & \begin{array}{c}\text { Ruch } \\ \text { ciężki } \\ \text { i bardzo } \\ \text { ciężki }\end{array}\end{array} \begin{array}{c}\text { Ruch } \\ \text { mniejszy } \\ \text { od ciężkiego }\end{array}\right]$

W przypadku, gdy gruboziarnisty materiał tworzący podłoże uniemożliwia przeprowadzenie badania zagęszczenia, kontrolę zagęszczenia należy oprzeć na metodzie obciążeń płytowych. Należy określić pierwotny i wtórny moduł odkształcenia podłoża według BN-64/8931-02 [3]. Stosunek wtórnego i pierwotnego modułu odkształcenia nie powinien przekraczać 2,2.

Wilgotność gruntu podłoża podczas zagęszczania powinna być równa wilgotności optymalnej z tolerancja od -20% do $+10 \%$.

5.5. Utrzymanie koryta oraz wyprofilowanego i zagęszczonego podłoża

Podłoże (koryto) po wyprofilowaniu i zagęszczeniu powinno być utrzymywane w dobrym stanie.

Jeżeli po wykonaniu robót związanych z profilowaniem i zagęszczeniem podłoża nastapi przerwa w robotach i Wykonawca nie przystapi natychmiast do układania warstw nawierzchni, to powinien on zabezpieczyć podłoże przed nadmiernym zawilgoceniem, na przykład przez rozłożenie folii lub w inny sposób zaakceptowany przez Inżyniera.

Jeżeli wyprofilowane i zagęszczone podłoże uległo nadmiernemu zawilgoceniu, to do układania kolejnej warstwy można przystapić dopiero po jego naturalnym osuszeniu.

Po osuszeniu podłoża Inżynier oceni jego stan i ewentualnie zaleci wykonanie niezbędnych napraw. Jeżeli zawilgocenie nastapiło wskutek zaniedbania Wykonawcy, to naprawę wykona on na własny koszt.

6. KONTROLA JAKOŚCI ROBÓT

6.1. Ogólne zasady kontroli jakości robót

Ogólne zasady kontroli jakości robót podano w SST D-00.00.00 „Wymagania ogólne" pkt 6.

6.2. Badania w czasie robót

6.2.1. Częstotliwość oraz zakres badań i pomiarów

Częstotliwość oraz zakres badań i pomiarów dotyczacych cech geometrycznych i zagęszczenia koryta i wyprofilowanego podłoża podaje tablica 2.

Tablica 2. Częstotliwość oraz zakres badań i pomiarów wykonanego koryta i wyprofilowanego podłoża

Lp.	Wyszczególnienie badań i pomiarów	Minimalna częstotliwość badań i pomiarów
1	Szerokość koryta	10 razy na 1 km
2	Równość podłużna	co 20 m na każdym pasie ruchu
3	Równość poprzeczna	10 razy na 1 km

4	Spadki poprzeczne *)	10 razy na 1 km
5	Rzędne wysokościowe	co 25 m w osi jezdni i na jej krawędziach
6	Uksztattowanie osi w planie ${ }^{\text {() }}$	co 25 m w osi jezdni i na jej krawędziach

7	Zagęszczenie, wilgotność gruntu podłoża	w 2 punktach na dziennej działce roboczej, lecz nie rzadziej niž raz na $600 \mathrm{~m}^{2}$

*) Dodatkowe pomiary spadków poprzecznych i uksztattowania osi w planie należy wykonać w punktach głównych łuków poziomych

6.2.2. Szerokość koryta (profilowanego podłoża)

Szerokość koryta i profilowanego podłoża nie może różnić się od szerokości projektowanej o więcej niż +10 cm i-5 cm.

6.2.3. Równość koryta (profilowanego podłoża)

Nierówności podłużne koryta i profilowanego podłoża należy mierzyć 4-metrowa łatą zgodnie z norma BN-68/8931-04 [4].

Nierówności poprzeczne należy mierzyć 4-metrową łata.
Nierówności nie moga przekraczać 20 mm .
6.2.4. Spadki poprzeczne

Spadki poprzeczne koryta i profilowanego podłoża powinny być zgodne z dokumentacja projektową z tolerancja $\pm 0,5 \%$.

6.2.5. Rzędne wysokościowe

Różnice pomiędzy rzędnymi wysokościowymi koryta lub wyprofilowanego podłoża i rzędnymi projektowanymi nie powinny przekraczać $+1 \mathrm{~cm},-2 \mathrm{~cm}$.

6.2.6. Ukształtowanie osi w planie

Oś w planie nie może być przesunięta w stosunku do osi projektowanej o więcej niż $\pm 5 \mathrm{~cm}$.

6.2.7. Zagęszczenie koryta (profilowanego podłoża)

Wskaźnik zagęszczenia koryta i wyprofilowanego podłoża określony wg BN-77/8931-12 [5] nie powinien być mniejszy od podanego w tablicy 1.

Jeśli jako kryterium dobrego zagęszczenia stosuje się porównanie wartości modułów odkształcenia, to wartość stosunku wtórnego do pierwotnego modułu odkształcenia, określonych zgodnie z normą BN-64/8931-02 [3] nie powinna być większa od 2,2.

Wilgotność w czasie zagęszczania należy badać według PN-B-06714-17 [2]. Wilgotność gruntu podłoża powinna być równa wilgotności optymalnej z tolerancją od -20% do + 10\%.

6.3. Zasady postępowania z wadliwie wykonanymi odcinkami koryta (profilowanego podłoża)

Wszystkie powierzchnie, które wykazuja większe odchylenia cech geometrycznych od określonych w punkcie 6.2 powinny być naprawione przez spulchnienie do głębokości co najmniej 10 cm , wyrównanie i powtórne zagęszczenie. Dodanie nowego materiału bez spulchnienia wykonanej warstwy jest niedopuszczalne.

7. OBMIAR ROBÓT

7.1. Ogólne zasady obmiaru robót

Ogólne zasady obmiaru robót podano w SST D-00.00.00 „Wymagania ogólne" pkt 7.

7.2. Jednostka obmiarowa

Jednostka obmiarowa jest m^{2} (metr kwadratowy) wykonanego i odebranego koryta.

8. ODBIÓR ROBÓT

Ogólne zasady odbioru robót podano w SST D-00.00.00 „Wymagania ogólne" pkt 8. Roboty uznaje się za wykonane zgodnie z dokumentacja projektowa, SST i wymaganiami Inżyniera, jeżeli wszystkie pomiary i badania z zachowaniem tolerancji wg punktu 6 dały wyniki pozytywne.
9. PODSTAWA PŁATNOŚCI

9.1. Ogólne ustalenia dotyczące podstawy płatności

Ogólne ustalenia dotyczace podstawy płatności podano w SST D-00.00.00 „Wymagania ogólne" pkt 9 .

9.2. Cena jednostki obmiarowej

Cena wykonania $1 \mathrm{~m}^{2}$ koryta obejmuje:

- prace pomiarowe i roboty przygotowawcze,
- odspojenie gruntu z przerzutem na pobocze i rozplantowaniem,
- załadunek nadmiaru odspojonego gruntu na środki transportowe i odwiezienie na odkład lub nasyp,
- profilowanie dna koryta lub podłoża,
- zagęszczenie,
- utrzymanie koryta lub podłoża,
- przeprowadzenie pomiarów i badań laboratoryjnych, wymaganych w specyfikacji technicznej.

10. PRZEPISY ZWIAZANE

Normy

1. PN-B-04481 Grunty budowlane. Badania próbek gruntu
2. PN-/B-06714- Kruszywa mineralne. Badania. Oznaczanie

17 wilgotności
3. BN-64/8931-02 Drogi samochodowe. Oznaczanie modułu odkształcenia nawierzchni podatnych i podłoża przez obciążenie płyta
4. BN-68/8931-04 Drogi samochodowe. Pomiar równości nawierzchni planografem i łata
5. BN-77/8931-12 Oznaczanie wskaźnika zagęszczenia gruntu

D-04.06.01
PODBUDOWA Z CHUDEGO BETONU

1. WSTĘP

1.1. Przedmiot SST

Przedmiotem niniejszej ogólnej specyfikacji technicznej (SST) sa wymagania dotyczace wykonania i odbioru robót związanych z wykonywaniem podbudowy z chudego betonu w trakcie robót związanych z przebudowa „Płyty Rynku" w Obrzycku.

1.2. Zakres stosowania SST

Szczegółowa specyfikacja techniczna jest stosowana jako dokument przetargowy i kontraktowy przy zlecaniu realizacji robót wymienionych w pkt. 1.1.

1.3. Zakres robót objętych SST

Ustalenia zawarte w niniejszej specyfikacji dotyczą zasad prowadzenia robót związanych z wykonywaniem podbudowy z chudego betonu.

Podbudowa z chudego betonu może być wykonywana dla dróg o kategorii ruchu od KR1 do KR6 wg „Katalogu typowych konstrukcji nawierzchni sztywnych", IBDiM -2001 r. [25].
Tablica 1. Klasyfikacja ruchu ze względu na liczbę osi obliczeniowych

Kategoria ruchu	Liczba osi obliczeniowych na dobę na pas obliczeniowy	
	obciążenie osi 100 kN	obciążenie osi 115 kN
KR1	≤ 12	≤ 7
KR2	od 13 do 70	od 8 do 40
KR3	od 71 do 335	od 41 do 192
KR4	od 336 do 1000	od 193 do 572
KR5	od 1001 do 2000	od 573 do 1144
KR6	2001 i więcej ${ }^{11}$	1145 i więcej ${ }^{1)}$

1) Obliczenia konstrukcji wykonano dla 4000 osi 100 kN lub 2280 osi 115 kN

Podbudowę z chudego betonu wykonuje się, zgodnie z ustaleniami podanymi w dokumentacji projektowej, jako:

- podbudowę zasadnicza.

1.4. Określenia podstawowe

1.4.1. Podbudowa z chudego betonu - jedna lub dwie warstwy zagęszczonej mieszanki betonowej, która po osiągnięciu wytrzymałości na ściskanie nie mniejszej niż 6 MPa i nie większej niż 9 MPa , stanowi fragment nośnej części nawierzchni drogowej.
1.4.2. Chudy beton - materiał budowlany powstały przez wymieszanie mieszanki kruszyw z cementem w ilości od 5% do 7% w stosunku do kruszywa lecz nie przekraczajacej $130 \mathrm{~kg} / \mathrm{m}^{3}$ oraz optymalna ilością wody, który po zakończeniu procesu wiązania osiaga wytrzymałość na ściskanie $\mathrm{R}_{28} \mathrm{w}$ granicach od 6 do 9 MPa .
1.4.2. Pozostałe określenia podstawowe sa zgodne z obowiązujaccymi, odpowiednimi polskimi normami i z definicjami podanymi w SST D-00.00.00 „Wymagania ogólne" pkt 1.4.

1.5. Ogólne wymagania dotyczące robót

Ogólne wymagania dotyczące robót podano w SST D-00.00.00 „Wymagania ogólne" pkt 1.5.

2. MATERIAŁY

2.1. Ogólne wymagania dotyczące materiałów

Ogólne wymagania dotyczace materiałów, ich pozyskiwania i składowania podano w SST D00.00 .00 "Wymagania ogólne" pkt 2.

2.2. Cement

Należy stosować cementy powszechnego użytku: portlandzki CEM I klasy 32,5. Wymagania dla cementu zestawiono w tablicy 2.
Tablica 2. Wymagania dla cementu do chudego betonu

Lp.	Właściwości	Klasa cementu 32,5
1	Wytrzymałość na ściskanie (MPa), po 7 dniach, nie mniej niż:	16
2	Wytrzymałość na ściskanie (MPa), po 28 dniach, nie mniej niż:	32,5
3	Początek czasu wiązania, min , nie wcześniej niż:	75
4	Stałość objętości, mm, nie więcej niż:	10

Przechowywanie cementu powinno się odbywać zgodnie z BN-88/6731-08 [22].

2.3. Kruszywo

Do wykonania mieszanki chudego betonu należy stosować:

- żwir i mieszankę wg PN-B-11111:1996 [14],
- piasek wg PN-B-11113:1996 [16],
- kruszywo łamane wg PN-B-11112:1996 [15] i WT/MK-CZDP84 [26],

2.4. Woda

Do wytwarzania mieszanki betonowej jak i do pielęgnacji wykonanej podbudowy należy stosować wodę odpowiadajaca wymaganiom normy PN-B-32250:1988 [18]. Bez badań laboratoryjnych można stosować wodociągową wodę pitną.

2.6. Materiały do pielęgnacji podbudowy z chudego betonu

Do pielęgnacji podbudowy z chudego betonu moga być stosowane:

- preparaty pielęgnacyjne posiadające aprobatę techniczna,
- folie z tworzyw sztucznych,
- włókniny według PN-P-01715:1985 [19],
- piasekiwoda.

3. SPRZĘT

3.1. Ogólne wymagania dotyczące sprzętu

Ogólne wymagania dotyczące sprzętu podano w SST D-00.00.00 „Wymagania ogólne" pkt 3.

3.2. Sprzęt do wykonywania podbudowy z chudego betonu

Wykonawca przystępujący do wykonania podbudowy z chudego betonu, powinien wykazać się możliwością korzystania z następujacego sprzętu:

- wytwórni stacjonarnej lub mobilnej do wytwarzania chudej mieszanki betonowej. Wytwórnia powinna być wyposażona w urządzenia do wagowego dozowania wszystkich składników, gwarantujace następujące tolerancje dozowania, wyrażone w stosunku do masy poszczególnych składników: kruszywo $\pm 3 \%$, cement $\pm 0,5 \%$, woda $\pm 2 \%$. Inżynier może dopuścić objętościowe dozowanie wody,
- przewoźnych zbiorników na wode,
- układarek albo równiarek do rozkładania chudej mieszanki betonowej,
- walców wibracyjnych lub statycznych do zagęszczania lub płyty wibracyjne,
- zagęszczarek płytowych, ubijaków mechanicznych lub małych walców wibracyjnych do zagęszczania w miejscach trudno dostępnych.

4. TRANSPORT

4.1. Ogólne wymagania dotyczące transportu

Ogólne wymagania dotyczące transportu podano w SST D-00.00.00 „Wymagania ogólne" pkt 4.

4.2. Transport materiałów

Transport cementu powinien odbywać się zgodnie z BN-88/6731-08 [22]. Cement luzem należy przewozić cementowozami, natomiast cement workowany można przewozić dowolnymi środkami transportu, w sposób zabezpieczony przed zawilgoceniem.

Kruszywo można przewozić dowolnymi środkami transportu w warunkach zabezpieczajacych je przed zanieczyszczeniem, zmieszaniem z innymi materiałami i zawilgoceniem.

Woda może być dostarczana wodociągiem lub przewoźnymi zbiornikami wody,
Transport mieszanki chudego betonu powinien odbywać się zgodnie z PN-S-96013:1997 [20].

5. WYKONANIE ROBÓT

5.1. Ogólne zasady wykonania robót

Ogólne zasady wykonania robót podano w SST D-00.00.00 „Wymagania ogólne" pkt 5.

5.2. Projektowanie mieszanki chudego betonu

Przed przystapieniem do robót, w terminie uzgodnionym z Inżynierem, Wykonawca dostarczy Inżynierowi do akceptacji projekt składu mieszanki chudego betonu oraz wyniki badań laboratoryjnych poszczególnych składników i próbki materiałów pobrane w obecności Inżyniera do wykonania badań kontrolnych przez Inżyniera.

Projektowanie mieszanki chudego betonu polega na:

- doborze kruszywa do mieszanki,
- doborze ilości cementu,
- doborze ilości wody.

Krzywa uziarnienia mieszanki mineralnej powinna mieścić się w polu dobrego uziarnienia wyznaczonego przez krzywe graniczne wg PN-S-96013: 1997 [20].

Rzędne krzywych granicznych uziarnienia mieszanek mineralnych podano w tablicy 3 i na rysunku 1 i 2.

Uziarnienie kruszywa powinno być tak dobrane, aby mieszanka betonowa wykazywała maksymalna szczelność i urabialność przy minimalnym zużyciu cementu i wody.

Tablica 3.Rzędne krzywych granicznych uziarnienia mieszanki mineralnej.

Sito o boku oczka kwadratowego (mm)	Przechodzi przez sito $(\%)$	Przechodzi przez sito $(\%)$
63	-	100
31,5	100 16 8	od 60 do 80
od 40 do 65	od 60 do 85	
2	od 25 do 55	od 40 do 67
1	od 20 do 45	od 30 do 55
od 15 do 35	od 20 do 40	
od 15 do 35		

Przebudowa „Płyty Rynku" w Obrzycku

0,5	od 7 do 20		
od 2 do 12			
od 0 do 5		\quad	od 8 do 20
:---:			
od 4 do 13			
od 0 do 5			

Zawartość cementu powinna wynosić od 5 do 7% w stosunku do kruszywa i nie powinna przekraczać $130 \mathrm{~kg} / \mathrm{m}^{3}$.

Zawartość wody powinna odpowiadać wilgotności optymalnej, określonej według normalnej próby Proctora, zgodnie z PN-B-04481: 1988 [9] (duży cylinder, metoda II).

Rysunek 1. Graniczne krzywe uziarnienia do chudego betonu od 0 do $31,5 \mathrm{~mm}$.

5.3. Właściwości chudego betonu.

Chudy beton powinien spełniać wymagania określone w tablicy 4.
Tablica 4. Wymagania dla chudego betonu

Lp.	Właściwości	Wymagania	Badania według
1	Wytrzymałość na ściskanie po 7 dniach, MPa	od 3,5 do 5,5	PN-B-06250 $[10]$
2	Wytrzymałość na ściskanie po 28 dniach, MPa	od 6,0 do 9,0	PN-B-06250 $[10]$
3	Nasiąkliwość, \% m/m, nie więcej niż:	9	PN-B-06250 $[10]$
4	Mrozoodporność, zmniejszenie wytrzymałości, \%, nie więcej niż:	20	PN-B-06250 $[10]$

5.4. Warunki przystapienia do robót

Podbudowa z chudego betonu nie powinna być wykonywana gdy temperatura powietrza jest niższa niż $5^{\circ} \mathrm{C}$ i wyższa niż $25^{\circ} \mathrm{C}$ oraz gdy podłoże jest zamarznięte.

5.5. Przygotowanie podłoża

Podłoże pod podbudowę z chudego betonu powinno być przygotowane zgodnie z wymaganiami określonymi w dokumentacji projektowej i SST.

5.6. Wytwarzanie mieszanki betonowej

Mieszankę chudego betonu o ściśle określonym składzie zawartym w recepcie laboratoryjnej należy wytwarzać w mieszarkach zapewniających ciagłość produkcji i gwarantujaccych otrzymanie jednorodnej mieszanki.

Składniki mieszanki chudego betonu powinny być dozowane wagowo zgodnie z normą PN-S96013:1997 [20].

Mieszanka po wyprodukowaniu powinna być od razu transportowana na miejsce wbudowania, w sposób zabezpieczony przed segregacja i nadmiernym wysychaniem.

5.7. Wbudowywanie i zagęszczanie mieszanki betonowej

Układanie podbudowy z chudego betonu należy wykonywać układarkami mechanicznymi, poruszającymi się po prowadnicach.

Przy układaniu chudej mieszanki betonowej za pomocą równiarek konieczne jest stosowanie prowadnic. Wbudowanie za pomoca równiarek bez stosowania prowadnic, może odbywać się tylko w wyjątkowych wypadkach, określonych w SST i za zgodą Inżyniera.

Podbudowy z chudego betonu wykonuje się w jednej warstwie o grubości od 10 do 20 cm , po zagęszczeniu. Gdy wymagana jest większa grubość, to do układania drugiej warstwy można przystapić po odbiorze jej przez Inżyniera.

Natychmiast po rozłożeniu i wyprofilowaniu mieszanki należy rozpoczać jej zagęszczanie. Powierzchnia zagęszczonej warstwy powinna mieć prawidłowy przekrój poprzeczny i jednolity wyglad.

Zagęszczanie należy kontynuować do osiagnięcia wskaźnika zagęszczenia nie mniejszego niż 0,98 maksymalnego zagęszczenia określonego według normalnej próby Proctora zgodnie z PN-B04481: 1988 [9], (duży cylinder metoda II). Zagęszczenie powinno być zakończone przed rozpoczęciem czasu wiązania cementu.

Wilgotność mieszanki chudego betonu podczas zagęszczania powinna być równa wilgotności optymalnej z tolerancja + 10\% i-20\% jej wartości.

5.8. Spoiny robocze

Wykonawca powinien tak organizować roboty, aby unikać podłużnych spoin roboczych, poprzez wykonanie podbudowy na całej szerokości koryta.

5.9. Nacinanie szczelin

W początkowej fazie twardnienia betonu zaleca się wycięcie szczelin pozornych na głębokość około $1 / 3$ jej grubości.

Szerokość naciętych szczelin pozornych powinna wynosić od 3 do 5 mm . Szczeliny te należy wyciać tak, aby cała powierzchnia podbudowy była podzielona na kwadratowe lub prostokątne płyty. Stosunek długości płyt do ich szerokości powinien być nie większy niż od 1,5 do 1,0.

W przypadku przekroczenia górnej granicy siedmiodniowej wytrzymałości i spodziewanego przekroczenia dwudziestoośmiodniowej wytrzymałości na ściskanie chudego betonu, wycięcie szczelin pozornych jest konieczne.

5.10. Pielęgnacja podbudowy

Podbudowa z chudego betonu powinna być natychmiast po zagęszczeniu poddana pielęgnacji. Pielęgnacja powinna być przeprowadzona według jednego z następujacych sposobów:
a) skropienie preparatem pielęgnacyjnym posiadającym aprobatę techniczna, wilości ustalonej w SST,
b) przykrycie na okres 7 do 10 dni nieprzepuszczalną folia z tworzywa sztucznego, ułożoną na zakład co najmniej 30 cm i zabezpieczona przed zerwaniem z powierzchni podbudowy przez wiatr,
c) przykrycie matami lub włókninami i spryskiwanie woda przez okres 7 do 10 dni,
d) przykrycie warstwą piasku i utrzymanie jej w stanie wilgotnym przez okres 7 do 10 dni.

Stosowanie innych środków do pielęgnacji podbudowy wymaga każdorazowej zgody Inżyniera.
Nie należy dopuszczać żadnego ruchu pojazdów i maszyn po podbudowie w okresie 7 do 10 dni pielęgnacji, a po tym czasie ewentualny ruch budowlany może odbywać się wyłącznie za zgoda Inżyniera.

5.11. Odcinek próbny

Wykonawca powinien wykonać odcinek próbny w celu:

- stwierdzenia czy sprzęt do produkcji mieszanki betonowej, rozkładania i zagęszczania jest właściwy,
- określenia grubości warstwy wbudowanej mieszanki przed zagęszczeniem, koniecznej do uzyskania wymaganej grubości warstwy zagęszczonej,
- określenia liczby przejść walców dla uzyskania wymaganego wskaźnika zagęszczenia podbudowy.

Na odcinku próbnym Wykonawca powinien użyć materiałów oraz sprzętu do mieszania rozkładania i zagęszczania , jakie będa stosowane do wykonywania podbudowy z chudego betonu. Odcinek próbny powinien być zlokalizowany w miejscu wskazanym przez Inżyniera.

Wykonawca może przystapić do wykonywania podbudowy z chudego betonu po zaakceptowaniu odcinka próbnego przez Inżyniera.

5.12. Utrzymanie podbudowy

Podbudowa po wykonaniu, a przed ułożeniem następnej warstwy, powinna być chroniona przed uszkodzeniami. Jeżeli Wykonawca będzie wykorzystywał, za zgodą Inżyniera, gotową podbudowę do ruchu budowlanego, to powinien naprawić wszelkie uszkodzenia podbudowy, spowodowane przez ten ruch, na własny koszt.

Wykonawca jest zobowiazany do przeprowadzenia bieżących napraw podbudowy, uszkodzonej wskutek oddziaływania czynników atmosferycznych, takich jak opady deszczu, śniegu i mróz.

Wykonawca jest zobowiązany wstrzymać ruch budowlany po okresie intensywnych opadów deszczu, jeżeli wystąpi możliwość uszkodzenia podbudowy.

Podbudowa z chudego betonu musi być przed zima przykryta co najmniej jedna warstwa mieszanki mineralno-asfaltowej.

6. KONTROLA JAKOŚCI ROBÓT

6.1. Ogólne zasady kontroli jakości robót

Ogólne zasady kontroli jakości robót podano w SST D-00.00.00 „Wymagania ogólne" pkt 6.

6.2. Badania przed przystapieniem do robót

Przed przystapieniem do robót Wykonawca powinien wykonać badania cementu, kruszywa oraz w przypadkach watpliwych wody i przedstawić wyniki tych badań Inżynierowi do akceptacji.

Badania powinny obejmować wszystkie właściwości określone w punktach od 2.2 do 2.4 oraz w punktach 5.2 i 5.3 niniejszej SST.

6.3. Badania w czasie robót

6.3.1. Częstotliwość oraz zakres badań i pomiarów

Częstotliwość oraz zakres badań i pomiarów w czasie wykonywania podbudowy z chudego betonu podano w tablicy 5 .

6.3.2. Właściwości kruszywa

Właściwości kruszywa należy określić przy każdej zmianie rodzaju kruszywa i dla każdej partii.
Właściwości kruszywa powinny być zgodne z wymaganiami normy PN-S-96013:1997[20].
Tablica 5. Częstotliwość oraz zakres badań i pomiarów przy wykonywaniu podbudowy chudego betonu

Lp.	Wyszczególnienie badań	Czestotliwość badań	
		Minimalne ilości badań na dziennej działce roboczej	Maksymalna po- wierzchnia podbudowy na jedno badanie
1	Właściwości kruszywa	dla każdej partii kruszywa i przy każdej zmianie kruszywa	
2	Właściwości wody	dla każdego wątpliwego żródła	
3	Właściwości cementu	dla każdej partii	
4	Uziarnienie mieszanki mineralnej	2	$600 \mathrm{~m}^{2}$
5	Wilgotność mieszanki chudego betonu	2	$600 \mathrm{~m}^{2}$
6	Zagęszczenie mieszanki chudego betonu	2	$600 \mathrm{~m}^{2}$
7	Grubość podbudowy z chudego betonu	2	$600 \mathrm{~m}^{2}$
8	Oznaczenie wytrzymałości na ściskanie chudego betonu; po 7 dniach po 28 dniach	3 próbki 3 próbki	400 m ${ }^{2}$
9	Oznaczenie nasiąkliwości chudego betonu	w przypadkach watpliwych i na zlecenie Inżyniera	
10	Oznaczenie mrozoodporności chudego betonu		

6.3.3. Właściwości wody

W przypadkach wątpliwych należy przeprowadzić badania wody według PN-B-32250:1988 [18].

6.3.4. Właściwości cementu

Dla każdej dostawy cementu należy określić właściwości podane w tablicy 2.

6.3.5. Uziarnienie mieszanki mineralnej

Próbki do badań należy pobierać z wytwórni po wymieszaniu kruszyw, a przed podaniem cementu. Badanie należy wykonać zgodnie z normą PN-B-06714-15:1991 [11].

Krzywa uziarnienia mieszanki mineralnej powinna być zgodna z recepta.
6.3.6. Wilgotność mieszanki chudego betonu

Wilgotność mieszanki chudego betonu powinna być równa wilgotności optymalnej, określonej w recepcie z tolerancja + 10\%, - 20% jej wartości.

6.3.7. Zagęszczenie podbudowy z chudego betonu

Mieszanka chudego betonu powinna być zagęszczana do osiagnięcia wskaźnika zagęszczenia nie mniejszego niż 0,98 maksymalnego zagęszczenia laboratoryjnego oznaczonego zgodnie z normalną próbą Proctora (metoda II), według PN-B-04481:1988 [9].

6.3.8. Grubość podbudowy z chudego betonu

Grubość warstwy należy mierzyć bezpośrednio po jej zagęszczeniu. Grubość podbudowy powinna być zgodna z dokumentacją projektową z tolerancja $\pm 1 \mathrm{~cm}$.

6.3.9. Wytrzymałość na ściskanie chudego betonu

Wytrzymałość na ściskanie określa się na próbkach walcowych o średnicy i wysokości 16,0 cm . Próbki do badań należy pobierać z miejsc wybranych losowo, w świeżo rozłożonej warstwie. Próbki w ilości 6 sztuk należy formować i przechowywać zgodnie z normą PN-S-96013: 1997 [20]. Trzy próbki należy badać po 7 dniach i trzy po 28 dniach przechowywania. Wyniki wytrzymałości na ściskanie powinny być zgodne z wymaganiami podanymi w tablicy 4.

6.3.10. Nasiąkliwość i mrozoodporność chudego betonu

Nasiąkliwość i mrozoodporność określa się po 28 dniach dojrzewania betonu, zgodnie z norma PN-B-06250:1988 [10].

Wyniki badań powinny być zgodne z wymaganiami podanymi w tablicy 4 .

6.4. Wymagania dotyczące cech geometrycznych podbudowy z chudego betonu

6.4.1. Częstotliwość oraz zakres badań i pomiarów

Częstotliwość oraz zakres badań i pomiarów podaje tablica 6.
Tablica 6. Częstotliwość oraz zakres badań i pomiarów wykonanej podbudowy z chudego betonu

Lp.	Wyszczególnienie badań i pomiarów	Minimalna częstotliwość badań i pomiarów
1	Szerokość podbudowy	10 razy na 1 km
2	Równość podłużna	w sposób ciagły planografem albo co 20 m łata na każdym pasie ruchu
3	Równość poprzeczna	10 razy na 1 km
4	Spadki poprzeczne*)	10 razy na 1 km
5	Rzędne wysokościowe	co 25 m,
6	Grubość podbudowy	w 3 punktach, lecz nie rzadziej niż raz na 100 m

*) Dodatkowe pomiary spadków poprzecznych i uksztaltowanie osi w planie należy wykonać w punktach głównych łuków poziomych.

6.4.2. Szerokość podbudowy

Szerokość podbudowy powinna być zgodna z dokumentacja projektową z tolerancja +10 cm, -5 cm .

Na jezdniach bez krawężników szerokość podbudowy powinna być większa o co najmniej 25 cm od szerokości warstwy na niej układanej lub o wartość wskazana w dokumentacji projektowej.
6.4.3. Równość podbudowy

Nierówności podłużne podbudowy należy mierzyć 4-metrowa łatą lub planografem, zgodnie z norma BN-68/8931-04 [23].

Nierówności poprzeczne podbudowy należy mierzyć 4-metrową łata.
Nierówności podbudowy nie moga przekraczać:

- 9 mm dla podbudowy zasadniczej,
6.4.4. Spadki poprzeczne podbudowy

Spadki poprzeczne podbudowy na prostych i łukach powinny być zgodne z dokumentacja projektowa z tolerancja $\pm 0,5 \%$.
6.4.5. Rzędne wysokościowe podbudowy

Rzędne wysokościowe podbudowy powinny być zgodne z dokumentacją projektową z tolerancja $+1 \mathrm{~cm},-2 \mathrm{~cm}$.
6.4.6. Uksztattowanie osi w planie

Oś podbudowy w planie powinna być zgodna z dokumentacją projektową z tolerancja $\pm 3 \mathrm{~cm}$ dla autostrad i dróg ekspresowych $i \pm 5 \mathrm{~cm}$ dla pozostałych dróg.
6.4.7. Grubość podbudowy

Grubość podbudowy powinna być zgodna z dokumentacją projektową z tolerancja:

- dla podbudowy zasadniczej $\pm 1 \mathrm{~cm}$,

7. OBMIAR ROBÓT

7.1. Ogólne zasady obmiaru robót

Ogólne zasady obmiaru robót podano w SST D-00.00.00 „Wymagania ogólne" pkt 7.

7.2. Jednostka obmiarowa

Jednostką obmiarowa jest m^{2} (metr kwadratowy) wykonanej podbudowy z chudego betonu.

8. ODBIÓR ROBÓT

Ogólne zasady odbioru robót podano w SST D-00.00.00 „Wymagania ogólne" pkt 8.
Roboty uznaje się za zgodne z dokumentacją projektowa, SST i wymaganiami Inżyniera, jeżeli wszystkie pomiary i badania z zachowaniem tolerancji wg pkt 6 dały wyniki pozytywne.

9. PODSTAWA PŁATNOŚCI

9.1. Ogólne ustalenia dotyczące podstawy płatności

Ogólne ustalenia dotyczące podstawy płatności podano w SST D-00.00.00 „Wymagania ogólne" pkt 9 .

9.2. Cena jednostki obmiarowej

Cena wykonania $1 \mathrm{~m}^{2}$ podbudowy z chudego betonu obejmuje:

- prace pomiarowe i roboty przygotowawcze,
- oznakowanie robót,
- dostarczenie materiałów,
- wyprodukowanie mieszanki,
- transport na miejsce wbudowania,
- przygotowanie podłoża,
- dostarczenie, ustawienie, rozebranie i odwiezienie prowadnic oraz innych materiałów i urządzeń pomocniczych,
- rozłożenie i zagęszczenie mieszanki,
- ewentualne nacinanie szczelin,
- pielęgnacja wykonanej podbudowy,
- przeprowadzenie pomiarów i badań laboratoryjnych, wymaganych w specyfikacji technicznej.

10. PRZEPISY ZWIAZANE

10.1. Normy

1. PN-EN 196- Metody badania cementu. Oznaczanie

1:1996
2. PN-EN 1962:1996
3. PN-EN 1963:1996
4. PN-EN 1966:1996
5. PN-EN 1971:2002
6. PN-EN 2061:2000
7. PN-EN 48011:2000
8. PN-EN 9342:1999
9. PN-B-04481:1988
10. PN-B-06250:1988
11. PN-B-0671415:1991
12. PN-B-0671437:1980
13. PN-B-06714-39: Kruszywa mineralne. Badania. Oznaczanie 1978 rozpadu żelazawego
14. PN-B-11111: 1996 Kruszywa mineralne. Kruszywa naturalne do nawierzchni drogowych; żwir i mieszanka
15. PN-B-11112: 1996 Kruszywa mineralne. Kruszywa łamane do nawierzchni drogowych
16. PN-B-11113: 1996 Kruszywa mineralne. Kruszywa naturalne do nawierzchni drogowych; piasek
17. PN-B-23004: 1988 Kruszywa mineralne. Kruszywa sztuczne. Kruszywa z żużla wielkopiecowego kawałkowego
18. PN-B-32250: 1988 Materiały budowlane. Woda do betonów i zapraw
19. PN-P-01715: Włókniny. Zestawienie wskaźników 1985 technologicznych i użytkowych oraz metod badań
20. PN-S-96013: Drogi samochodowe. Podbudowa z chudego 1997 betonu. Wymagania i badania
21. PN-S-96014: Drogi samochodowe i lotniskowe. Podbudowa z 1997 betonu cementowego pod nawierzchnię ulepszona.
22. BN-88/6731-08 Cement. Transport i przechowywanie
23. BN-68/8931-04 Drogi samochodowe. Pomiar równości nawierzchni planografem i łata.

10.2. Inne dokumenty

24.Katalog typowych konstrukcji nawierzchni podatnych i półsztywnych, IBDiM, Warszawa, 1997
25. Katalog typowych konstrukcji nawierzchni sztywnych, IBDiM, Warszawa, 2001
26. WT/MK-CZDP84. Wytyczne techniczne oceny jakości grysów i żwirów kruszonych z naturalnie rozdrobnionego surowca skalnego przeznaczonych do nawierzchni drogowych, CZDP, Warszawa, 1984

D-05.02.02

NAWIERZCHNIA BRUKOWCOWA
(bruk historyczny z rozbiórki ulic)

1. WSTECP

1.1. Przedmiot SST

Przedmiotem niniejszej ogólnej specyfikacji technicznej (SST) są wymagania dotyczace wykonania i odbioru nawierzchni brukowcowej w trakcie robót związanych z przebudowa „Płyty Rynku" w Obrzycku.

1.2. Zakres stosowania SST

Szczegółowa specyfikacja techniczna jest stosowana jako dokument przetargowy i kontraktowy przy zlecaniu realizacji robót wymienionych w pkt. 1.1.

1.3. Zakres robót objętych SST

Ustalenia zawarte w niniejszej specyfikacji dotyczą zasad prowadzenia robót związanych z wykonaniem nawierzchni brukowcowej z materiału rozbiórkowego.

1.4. Określenia podstawowe

1.4.1. Nawierzchnia brukowcowa - nawierzchnia, której warstwa ścieralna jest wykonana z brukowca.
1.4.2. Brukowiec - kamień narzutowy nieobrobiony (otoczak) lub kamień obrobiony, względnie płytowany kamień łamany, o kształcie zbliżonym do graniastosłupa lub ostrosłupa ściętego o nieregularnych lub zaokraglonych krawędziach, stosowany do wykonywania nawierzchni brukowcowych.
1.4.3. Kamień oporowy - brukowiec osadzony jako obramowanie i zabezpieczenie nawierzchni przed rozsuwaniem się jej na boki pod wpływem ubijania i obciążenia ruchem.
1.4.4. Podsypka - część nawierzchni z piasku lub innego drobnoziarnistego materiału, w której osadza się brukowiec.
1.4.5. Piasek - kruszywo naturalne o wielkości ziarn do 2 mm .
1.4.6. Pozostałe określenia sa zgodne z obowiazzujacymi, odpowiednimi polskimi normami i definicjami podanymi w SST D-00.00.00 „Wymagania ogólne" pkt 1.4.

1.5. Ogólne wymagania dotyczące robót

Ogólne wymagania dotyczace robót podano w SST D-05.02.00 „Nawierzchnie twarde nieulepszone. Wymagania ogólne" pkt 1.5.

2. MATERIAŁY

2.1. Ogólne wymagania dotyczące materiałów

Ogólne wymagania dotyczące materiałów, ich pozyskiwania i składowania podano w SST D05.02.00 "Nawierzchnie twarde nieulepszone. Wymagania ogólne" pkt 2.

2.2. Rodzaje materiałów

Materiałami stosowanymi przy wykonaniu nawierzchni brukowcowej, wg PN-B-06101 [19], sa:

- brukowiec nieobrobiony z rozbiórki ulic
- piasek na podsypke oraz do zasypania wykonanej nawierzchni, wg PN-B-11113 [16],
- woda, wg PN-B-32250 [18],

2.3. Wymagania dla materiałów

2.3.1. Brukowiec

Brukowiec do wykonania nawierzchni brukowcowej powinien być kamieniem trwałym, niezwietrzałym, mieć strukturę możliwie drobnoziarnistą i zwięzła, bez pęknięć i żył.
Należy zastosować brukowiec z rozbiórki

2.3.3. Piasek

Piasek na podsypkę oraz do zasypywania (zamulania) nawierzchni powinien odpowiadać wymaganiom podanym w SST D-05.02.00 „Nawierzchnie twarde nieulepszone. Wymagania ogólne".

3. SPRZĘT

3.1. Ogólne wymagania dotyczące sprzętu

Ogólne wymagania dotyczące sprzętu podano w SST D-05.02.00 „Nawierzchnie twarde nieulepszone. Wymagania ogólne" pkt 3.

3.2. Sprzęt do wykonania nawierzchni

Wykonawca przystępujacy do wykonania nawierzchni brukowcowej powinien wykazać się możliwościa korzystania z następującego sprzętu:

- ubijaków stalowych o masie od 25 do 35 kg , młotków brukarskich, dragów stalowych do wyjmowania bruku, łopat, pił, siekier,
- przewoźnych zbiorników do wody (beczkowozów),
- ew. walców statycznych o nacisku jednostkowym od 25 do $45 \mathrm{kN} / \mathrm{m}$, w przypadku zastapienia trzeciego ubijania ręcznego brukowca na podsypce piaskowej,
- ew. walców wibracyjnych o nacisku jednostkowym wału wibrujacego co najmniej $18 \mathrm{kN} / \mathrm{m}$ lub płytowych zagęszczarek wibracyjnych o nacisku jednostkowym co najmniej $16 \mathrm{kN} / \mathrm{m}^{2}$.

4. TRANSPORT

Ogólne wymagania dotyczące transportu podano w SST D-05.02.00 „Nawierzchnie twarde nieulepszone. Wymagania ogólne" pkt 4.

5. WYKONANIE ROBÓT

5.1. Ogólne zasady wykonania robót

Ogólne zasady wykonania robót podano w SST D-05.02.00 „Nawierzchnie twarde nieulepszone. Wymagania ogólne" pkt 5.

5.2. Przygotowanie podłoża

Podłoże pod nawierzchnię brukowcową powinno być przygotowane zgodnie z warunkami ogólnymi określonymi w SST D-05.02.00 „Nawierzchnie twarde nieulepszone. Wymagania ogólne" pkt 5.2.

Oprócz szpilek ustawionych w osi i w rzędach równoległych do osi drogi (w tym na krawędziach jezdni), należy równolegle do osi ustawić dodatkowo szpilki pośrednie, rozgraniczające pasy przeznaczone dla poszczególnych brukarzy. Najodpowiedniejsza szerokość pasa dla jednego brukarza wynosi $1,5 \mathrm{~m}$ i zmienia się w pewnych granicach zależnie od szerokości nawierzchni i liczby brukarzy.

5.3. Wykonanie podsypki

5.3.1. Podsypka piaskowa

Podsypka pod nawierzchnię powinna być wykonana z piasku odpowiadającego wymaganiom punktu 2.3.3.

Jeśli dokumentacja projektowa nie określa inaczej, to grubość warstwy podsypki powinna wynosić 10 cm , a po ubiciu brukowca powinna wynosić co najmniej od 2 do 3 cm liczac od spodu brukowca, o największej znormalizowanej wysokości, do spodu podsypki.

Przy podłożu z gruntów przepuszczalnych podsypkę rozściela się bezpośrednio na dnie koryta, a przy podłożu nieprzepuszczalnym - na wyrównanej i zagęszczonej warstwie odsączającej.

5.4. Układanie i ubijanie nawierzchni brukowcowej na podsypce piaskowej

Brukowiec przed dostarczeniem do koryta powinien być przesortowany. Brukowiec wyższy powinien być osadzany od strony zewnętrznej jezdni, niższy zaś ku jej środkowi. Różnica wysokości dwóch kamieni bezpośrednio przylegajacych do siebie nie powinna przekraczać 2 cm .

Każdy kamień ustawiony pionowo na sztorc, czołem do góry powinien być osadzony w podsypce najwyżej do połowy wysokości (od 8 do 10 cm) i mocno wbity uderzeniami młotka w górna powierzchnię tak, aby nie wychylał się przy poruszaniu. Podczas brukowania podsypka piaskowa powinna być nieco wilgotna, lecz nie nadmiernie. Na zamarzniętą podsypkę nie wolno kłaść brukowca. Nawierzchnię brukowcową należy wykonywać jednocześnie na całej jej szerokości.

Nawierzchnia powinna być ułożona ściśle, z przewiązaniem szczelin tak w kierunku podłużnym jak i poprzecznym, a każdy osadzony brukowiec musi przykrywać szczelinę powstała między dwoma uprzednio osadzonymi kamieniami i ma być do nich ściśle dosunięty.

Szczeliny podłużne nie moga być dłuższe niż dwa brukowce. Widziane z góry szczeliny powinny mieć kształt podobny do trójkatów utworzonych z linii krzywych. Dobrze osadzony brukowiec nie powinien osiadać pod naciskiem nogi i nie powinien łatwo dawać się wyciagnąć ręką.

Nawierzchnię brukowcową należy ubijać trzy razy ubijakami stalowymi o masie od 25 do 35 kg . Na odcinkach prostych ubijanie rozpoczyna się od kamieni oporowych i stopniowo przesuwa się ku środkowi jezdni. Na łukach poziomych o spadkach jednostronnych ubijanie rozpoczyna się od niższych kamieni oporowych i przesuwa się stopniowo do wyżej ułożonych na łuku zewnętrznym.

Pierwsze ubijanie wykonuje się bez wypełniania spoin i bez polewania brukowca. Ubijanie to ma na celu wyrównanie nawierzchni do profilu oraz częściowe osadzenie brukowca. Ubijakiem uderza się w środek czoła brukowca z wysokości 15 do 20 cm tak, aby zagłębienie brukowca wynosiło od 2 do 3 cm .

Po pierwszym ubiciu brukowiec klinuje się klińcem o wymiarach 12,8 mm do 20 mm , przesuwajac go miotłami w celu należytego zapełnienia spoin i polewając wodą. Następnie usuwa się z nawierzchni pozostały materiał i ubija się go po raz drugi, uderzając silnie w środek brukowca. Przy drugim ubiciu brukowiec powinien zagłębiać się o 1 do 2 cm .

Po drugim ubiciu uzupełnia się wypełnienie spoin klińcem o wymiarach 4 mm do $12,8 \mathrm{~mm}$ z przesuwaniem materiałów miotłami i polewaniem woda. Materiał pozostały na nawierzchni usuwa się i ubija po raz trzeci, uderzajac ubijakiem 2 lub 3 sasiednie brukowce dla wyrównania powierzchni.

Zamiast trzeciego ubicia nawierzchni może być zastosowane wałowanie. Przed wałowaniem należy usunać z nawierzchni luźno leżacy materiał. Wałowanie wykonuje się walcem lekkim o nacisku od 25 do $45 \mathrm{kN} / \mathrm{m}$, zaczynając od kamieni oporowych i stopniowo przesuwając się ku środkowi. Następnie wałuje się nawierzchnię w kierunku ukośnym do osi drogi. Walec po każdym pasie powinien przetaczać się od 5 do 6 razy. Podczas wałowania nawierzchnię należy polewać wodą.

Ubijanie należy prowadzić jednocześnie z układaniem brukowca. Pozostawienie ułożonego brukowca na kilka dni bez ubicia jest niedopuszczalne.

Podczas każdego kolejnego ubijania przekrój nawierzchni należy sprawdzać szablonem, a łatą równość w kierunku podłużnym.

Brukowce zapadnięte należy podnieść, uzupełniając brakujaca podsypkę, a wystające dobić. Brukowce uszkodzone przy ubijaniu należy wyjąć i zamienić nowymi. Ubijanie należy zakończyć na 3 do 5 m przed końcem odcinka, na którym ułożono brukowiec.

Po ostatecznym ubiciu lub uwałowaniu, przed oddaniem do ruchu, nawierzchnię należy przysypać warstwą 1,5 do 2 cm piasku (lub żwiru) w celu zabezpieczenia materiału wypełniającego spoiny przed wyrywaniem kołami pojazdów, uzupełnienia wypełnienia spoin i złagodzenia uderzeń kół pojazdów. Warstwę piasku należy utrzymywać przez okres 2 tygodni w stanie wilgotnym. Kruszywo zsuwane przez ruch w stronę poboczy należy podmiatać na środek jezdni.

Nawierzchnia brukowcowa powinna mieć w przekroju poprzecznym przekrój daszkowy o spadku zgodnym z dokumentacja projektowa, a jeśli dokumentacja projektowa nie określiła tego inaczej to o spadku 3 do 4% z zaokragleniem po środku jezdni o wysokości 1,5 do 2 cm .

6. KONTROLA JAKOŚCI ROBÓT

6.1. Ogólne zasady kontroli jakości robót

Ogólne zasady kontroli jakości robót podano w punkcie 6 SST D-05.02.00 „Nawierzchnie twarde nieulepszone. Wymagania ogólne".

6.2. Badania przed przystapieniem do robót

Przed przystapieniem do robót Wykonawca powinien wykonać badania materiałów przeznaczonych do wykonania robót i przedstawić wyniki tych badań Inżynierowi do akceptacji.

6.3. Badania w czasie robót

W czasie robót Wykonawca będzie sprawdzał, zgodnie z wymaganiami podanymi w punkcie 5.4 lub 5.5:

- sortowanie brukowca i osadzanie wyższych brukowców od strony zewnętrznej jezdni, a niższych ku jej środkowi,
- nieprzekraczanie wysokości dwóch kamieni bezpośrednio przylegajacych do siebie o
- właściwa wilgotność podsypki,
- osadzanie brukowców w podsypce co najwyżej do połowy ich wysokości (od 8 do cm),
- sposób ubijania brukowca,
- równość podłużną i poprzeczną nawierzchni.

6.4. Badania i pomiary dotyczące cech geometrycznych i właściwości nawierzchni brukowcowej

6.4.1. Częstotliwość oraz zakres badań i pomiarów

Przy badaniach i pomiarach wykonanej nawierzchni brukowcowej Wykonawca, w obecności Inżyniera, sprawdza:
a) konstrukcję nawierzchni,
b) ukształtowanie osi nawierzchni,
c) rzędne nawierzchni,
d) przekroje poprzeczne,
e) szerokość nawierzchni,
f) równość nawierzchni,
g) ścisłość ułożenia nawierzchni,
h) dokładność ubicia nawierzchni,
i) pielęgnację nawierzchni przed oddaniem do ruchu.

6.4.2. Wymagania dotyczące konstrukcji nawierzchni

Konstrukcję nawierzchni sprawdza się co do zgodności z dokumentacją projektową przez rozebranie nawierzchni na powierzchni około $0,1 \mathrm{~m}^{2}$ na co drugim kilometrze, lecz nie mniej niz̀ w dwóch miejscach w całości odbieranego odcinka i stwierdzenie wielkości, kształtu i jakości brukowca oraz grubości podsypki, jak również makroskopowo - jakości użytego materiału.

6.4.3. Wymagania dotyczace przekroju poprzecznego

Przekroje poprzeczne sprawdza się w 10 miejscach na każdym kilometrze przez przyłożenie szablonu profilowego. Przekroje poprzeczne powinny być tak wykonane, aby prześwit między dolna krawędzią szablonu profilowego a powierzchnią nawierzchni nie przekraczał 20 mm .

W miejscach wyznaczonych przez Inżyniera należy dokonać sprawdzenia spadku poprzecznego nawierzchni według ustaleń punktu 6.2.2 OST D-05.02.00 „Nawierzchnie twarde nieulepszone. Wymagania ogólne".

6.4.4. Wymagania dotyczace ścisłości ułożenia nawierzchni

Ścisłość ułżėenia brukowca sprawdza się 2 razy na 1 km przez wyłamanie od 1,5 do $2 \mathrm{~m}^{2}$ brukowca i ponowne zabrukowanie tym samym kamieniem. Ścisłość ułożenia brukowca przyjmuje się jako dostateczna, jeśli przy ponownym zabrukowaniu wyłamanej nawierzchni zabraknie kamienia do zabrukowania nie więcej niż 3\% wyłamanej powierzchni.
6.4.5. Wymagania dotyczące dokładności ubicia nawierzchni

Dokładność ubicia nawierzchni sprawdza się 5 razy na 1 km ubijakiem o masie od 25 do 35 kg, używanym do ubijania brukowca. Przy sprawdzaniu dokładności ubicia brukowiec nie powinien okazywać widocznych oznak osiadania pod wpływem trzech uderzeń ubijakiem.
6.4.6. Pozostałe cechy i właściwości wykonanej nawierzchni

Ukształtowanie osi w planie, rzędne wysokościowe, szerokość nawierzchni i równość nawierzchni należy wykonać według ustaleń SST D-05.02.00 „Nawierzchnie twarde nieulepszone. Wymagania ogólne" pkt 6.2, z częstotliwością podaną w tablicy 2.

6.5. Zasady postępowania z wadliwie wykonanymi odcinkami nawierzchni

6.5.1. Niewłaściwe cechy materiałów kamiennych

Wszystkie materiały kamienne nie spelniajace wymagań podanych w odpowiednich punktach specyfikacji zostana odrzucone. Jeśli materiały kamienne nie spełniajace wymagań zostana wbudowane, to na polecenie Inżyniera Wykonawca wymieni je na właściwe, na własny koszt.

6.5.2. Niewłaściwe cechy geometryczne nawierzchni

Wszystkie powierzchnie nawierzchni, które wykazują większe odchylenia cech geometrycznych od określonych w punktach 6.1 i 6.4 powinny być ponownie wykonane przez Wykonawcę na jego koszt.

7. OBMIAR ROBÓT

7.1. Ogólne zasady obmiaru robót

Ogólne zasady obmiaru robót podano w SST D-05.02.00 „Nawierzchnie twarde nieulepszone. Wymagania ogólne" pkt 7.

7.2. Jednostka obmiarowa

Jednostką obmiarowa jest m² (metr kwadratowy).

8. ODBIÓR ROBÓT

Ogólne zasady odbioru robót podano w SST D-05.02.00 „Nawierzchnie twarde nieulepszone. Wymagania ogólne" pkt 8.

9. PODSTAWA PŁATNOŚCI

9.1. Ogólne ustalenia dotyczące podstawy płatności

Ogólne ustalenia dotyczące podstawy płatności podano w SST D-05.02.00 „Nawierzchnie twarde nieulepszone. Wymagania ogólne" pkt 9.

9.2. Cena jednostki obmiarowej

Cena $1 \mathrm{~m}^{2}$ nawierzchni brukowcowej obejmuje:

- prace pomiarowe i oznakowanie robót,
- przygotowanie podłoża,
- dostarczenie brukowca i innych materiałów,
- wykonanie podsypki piaskowej lub cementowo-piaskowej,
- ustawienie kamieni oporowych,
- ułożenie brukowca,
- ubicie nawierzchni i zaklinowanie szczelin kruszywem łamanym bez zalewania spoin lub z wypełnieniem spoin zaprawą cementowo-piaskowa,
- przysypanie warstwa piasku lub żwiru,
- wykonanie pomiarów i badań laboratoryjnych wymaganych w specyfikacji technicznej.

10. PRZEPISY ZWIAZANE

Przepisy związane podano w SST D-05.02.00 „Nawierzchnie twarde nieulepszone. Wymagania ogólne" pkt 10.

D-05.03.01
NAWIERZCHNIA Z KOSTKI KAMIENNEJ

1. WSTĘP

1.1. Przedmiot SST

Przedmiotem niniejszej szczegółowej specyfikacji technicznej (SST) są wymagania dotyczące wykonania i odbioru robót związanych z wykonywaniem nawierzchni z kostki kamiennej w trakcie robót związanych z przebudowa „Płyty Rynku" w Obrzycku.

1.2. Zakres stosowania SST

Szczegółowa specyfikacja techniczna jest stosowana jako dokument przetargowy i kontraktowy przy zlecaniu realizacji robót wymienionych w pkt. 1.1.

1.3. Zakres robót objętych SST

Ustalenia zawarte w niniejszej specyfikacji dotyczą zasad prowadzenia robót związanych z wykonywaniem nawierzchni z kostki kamiennej regularnej

- $15 \times 17 \mathrm{~cm}$ (nawierzchnia ulic)
- $8 \times 11 \mathrm{~cm}$ (nawierzchnia parkingów)

1.4. Określenia podstawowe

1.4.1. Nawierzchnia twarda ulepszona - nawierzchnia bezpylna i dostatecznie równa, przystosowana do szybkiego ruchu samochodowego.
1.4.2. Nawierzchnia kostkowa - nawierzchnia, której warstwa ścieralna jest wykonana z kostek kamiennych.
1.4.3. Pozostałe określenia podstawowe sa zgodne z obowiązujacymi, odpowiednimi polskimi normami i z definicjami podanymi w SST D-00.00.00 „Wymagania ogólne" pkt 1.4.

1.5. Ogólne wymagania dotyczące robót

Ogólne wymagania dotyczące robót podano w SST D-00.00.00 „Wymagania ogólne" pkt 1.5.

2. MATERIAŁY

2.1. Ogólne wymagania dotyczące materiałów

Ogólne wymagania dotyczące materiałów, ich pozyskiwania i składowania, podano w SST D00.00.00 „Wymagania ogólne" pkt 2.

2.2. Kamienna kostka drogowa

2.2.1. Klasyfikacja

Kamienna kostka drogowa wg PN-B-11100 [8] jest stosowana do budowy nawierzchni z kostki kamiennej wg PN-S-06100 [11] oraz do budowy nawierzchni z kostki kamiennej nieregularnej wg PN-S-96026 [12]

W zależności od kształtów rozróżnia się trzy typy kostki:

- regularna,
- rzędowa,
- nieregularna.

Rozróżnia się dwa rodzaje kostki regularnej: normalna i łącznikowa.
W zależności od jakości surowca skalnego użytego do wyrobu kostki rozróżnia się dwie klasy kostki: I, II.

W zależności od dokładności wykonania rozróżnia się trzy gatunki kostki: 1, 2, 3 .
W zależności od wymiaru zasadniczego - wysokości kostki, rozróżnia się następujace wielkości (cm):

- kostka regularna i rzędowa - 12, 14, 16 i 18,

2.2.2. Wymagania

Surowcem do wyrobu kostki kamiennej sa skały magmowe, osadowe i przeobrażone. Wymagane cechy fizyczne i wytrzymałościowe przedstawia tablica 1.

Tablica 1. Wymagane cechy fizyczne i wytrzymałościowe dla kostki kamiennej

Lp.	Cechy fizyczne i wytrzymałościowe	Klasa		Badania według
	I	II		
1	Wytrzymałość na ściskanie w stanie powietrzno-suchym, MPa, nie mniej niż	160	120	PN-B-04110 [3]
2	Scieralność na tarczy w Boehmego, centymetrach, nie więcej niż	0,2	0,4	PN-B-041111 [4]
3	Wytrzymałosć na uderzene (zwięzłość), liczba uderzeń, nie mniej niż	12	8	PN-B-04115 [5]
4	Nasiąkliwość woda, w \%, nie więcej niż	0,5	1,0	PN-B-04101 [1]
5	Odporność na zamrażanie	nie bada się	całkowit a	PN-B-04102 [2]

2.2.3. Kształt i wymiary kostki regularnej

Kostka regularna normalna powinna mieć kształt sześcianu.
Kształt kostki regularnej normalnej przedstawia rysunek 1.

A - normalna
Rysunek 1

Wymagania dotyczące wymiarów kostki regularnej normalnej i łącznikowej przedstawia tablica 2.

Tablica 2. Wymiary kostki regularnej normalnej i łącznikowej oraz dopuszczalne odchyłki

Wyszán	Wielkość				Dopuszczalne odchyłki (cm			
	12	14	16	18	1	2	3	
Wymiar a	12	14	16	18	$\pm 0,5$	$\pm 0,7$	$\pm 1,0$	

Wymiar b	18	21	24	27	$\pm 0,7$	$\pm 1,0$	$\pm 1,2$	
Stosunek pola powierzchni dolnej (stopki) do górnej (czoła), nie mniejszy niż	-	-	-	-	1,0	0,8	0,7	
Nierówności powierzchni górnej (czoła), nie większe niż	-	-	-	-	$\pm 0,4$	$\pm 0,4$	$\pm 0,6$	
Wypukłość powierzchni bocznej, nie większa niż	-	-	-	-	0,4	0,8	0,8	
Nierówność powierzchni dolnej (stopki), nie większa niż	-	-	-	-	$\pm 0,4$	nie bada się		
Pęknięcia kostki	-	-	-	-	niedopuszczalne			

Krawędzie co najmniej jednej powierzchni kostki gatunku 1 powinny być bez uszkodzeń. Pozostałe krawędzie kostki mogą mieć uszkodzenie długości nie większej niż pół wymiaru wysokości kostki (a), natomiast łązna ich długość nie powinna przekraczać wymiaru wysokości kostki (a).

Kostki gatunku 2 i 3 moga mieć uszkodzenia krawędzi powierzchni czołowej o długości nie większej niż pół wymiaru wysokości kostki (a), natomiast łączna ich długość nie powinna przekraczać wielkości wymiaru wysokości kostki (a).

Uszkodzenia któregokolwiek z naroży kostki gatunku 1 i naroży powierzchni górnej (czoła) kostki gatunku 2 i 3 sa niedopuszczalne.

Szerokość lub głębokość uszkodzenia krawędzi lub naroży nie powinna być większa niż 0,6 cm.

2.3. Cement

Cement stosowany do podsypki i wypełnienia spoin powinien być cementem portlandzkim klasy 32,5 , odpowiadajacy wymaganiom PN-B-19701 [9].

Transport i przechowywanie cementu powinny być zgodne z BN-88/6731-08 [13].

2.4. Kruszywo

Kruszywo na podsypkę i do wypełniania spoin powinno odpowiadać wymaganiom normy PN-B-06712 [7].

Na podsypkę stosuje się mieszankę kruszywa naturalnego o frakcji od 0 do 8 mm , a do zaprawy cementowo-piaskowej o frakcji od 0 do 4 mm .

Zawartość pyłów w kruszywie na podsypkę cementowo-żwirową i do zaprawy cementowopiaskowej nie może przekraczać 3\%, a na podsypkę żwirowa- 8\%.

Kruszywo należy przechowywać w warunkach zabezpieczających je przed zanieczyszczeniem oraz zmieszaniem z kruszywami innych klas, gatunków, frakcji (grupy frakcji).

Pozostałe wymagania i badania wg PN-B-06712 [7].

2.5. Woda

Woda stosowana do podsypki i zaprawy cementowo-piaskowej, powinna odpowiadać wymaganiom PN-B-32250 [10]. Powinna to być woda „odmiany 1 ".

Badania wody należy wykonywać:

- w przypadku nowego żródła poboru wody,
- w przypadku podejrzeń dotyczących zmiany parametrów wody, np. zmętnienia, zapachu, barwy.

3. SPRZĘT

3.1. Ogólne wymagania dotyczące sprzętu

Ogólne wymagania dotyczące sprzętu podano w SST D-00.00.00 „Wymagania ogólne" pkt 3.

3.2. Sprzęt do wykonania nawierzchni \mathbf{z} kostki kamiennej

Wykonawca przystępujący do wykonania nawierzchni z kostek kamiennych powinien wykazać się możliwością korzystania z następującego sprzętu:

- betoniarki, do wytwarzania betonu i zapraw oraz przygotowywania podsypki cementowopiaskowej,
- ubijaków ręcznych i mechanicznych, do ubijania kostki,
- wibratorów płytowych i lekkich walców wibracyjnych, do ubijania kostki po pierwszym ubiciu ręcznym.

4. TRANSPORT

4.1. Ogólne wymagania dotyczące transportu

Ogólne wymagania dotyczace transportu podano w SST D-00.00.00 „Wymagania ogólne" pkt 4.

4.2. Transport materiałów

4.2.1. Transport kostek kamiennych

Kostki kamienne przewozi się dowolnymi środkami transportowymi.
Kostkę regularna należy układać na podłodze obok siebie tak, aby wypełniła cała powierzchnię środka transportowego. Na tak ułożonej warstwie należy bezpośrednio układać następne warstwy.

Kostkę regularna należy ustawiać w stosy.
Wysokość stosu lub pryzm nie powinna przekraczać 1 m.

4.2.2. Transport kruszywa

Kruszywo można przewozić dowolnymi środkami transportowymi w warunkach zabezpieczających je przed rozsypywaniem i zanieczyszczeniem.

5. WYKONANIE ROBÓT

5.1. Ogólne zasady wykonania robót

Ogólne zasady wykonania robót podano w SST D-00.00.00 „Wymagania ogólne" pkt 5.

5.2. Przygotowanie podbudowy

Jeżeli w dokumentacji projektowej lub SST przewidziano wykonanie nawierzchni z kostki kamiennej na podbudowie np. z chudego betonu to warunki wykonania podbudowy powinny odpowiadać wymaganiom zawartym w odpowiednich SST D-04.06.01 Podbudowa z chudego betonu,

5.3. Obramowanie nawierzchni

Do obramowania nawierzchni kostkowych stosuje się krawężniki kamienne drogowe.
Rodzaj obramowania nawierzchni powinien być zgodny z dokumentacja projektowa, SST lub wskazaniami Inżyniera.

Ustawienie krawężników powinno być zgodne z wymaganiami zawartymi w SST D-08.01.01 i SST D-08.01.02 „Krawężniki kamienne".

5.4. Podsypka

Do wykonania nawierzchni z kostki kamiennej należy stosować podsypkę:

- cementowo-piaskowa grubości 5 cm ,

Rodzaj zastosowanej podsypki powinien być zgodny z dokumentacją projektowa, SST lub wskazaniami Inżyniera.

Wymagania dla materiałów stosowanych na podsypkę powinny być zgodne z pkt 2 niniejszej SST oraz z PN-S-96026 [12].

Współczynnik wodnocementowy dla podsypki cementowo-piaskowej , powinien wynosić od 0,20 do 0,25 , a wytrzymałość na ściskanie $\quad R_{7}=10 \mathrm{MPa}, \mathrm{R}_{28}=14 \mathrm{MPa}$.

5.5. Układanie nawierzchni z kostki kamiennej

5.5.1. Układanie kostki regularnej

Kostka regularna może być układana:

- w rzędy poprzeczne, prostopadłe do osi drogi,
- w rzędy ukośne, pod kątem 45° do osi drogi,
- w jodełkę.

Deseń nawierzchni z kostki regularnej powinien być dostosowany do wymiarów kostki. Kostki duże o wysokości kostki od 16 do 18 cm powinny być układane w rzędy poprzeczne. Kostki średnie o wysokości od 12 do 14 cm oraz kostki małe, o wysokości od 8 do 10 cm , mogą być układane w rzędy poprzeczne, w rzędy ukośne lub w jodełkę.

Układanie kostek przy krawężnikach wymaga stosowania kostek regularnych łacznikowych dla uzyskania mijania się spoin w kierunku podłużnym.

Warunki układania kostki rzędowej sa takie same jak dla kostki regularnej.
Kostkę rzędową układa się w rzędy poprzeczne prostopadłe do osi drogi. Dopuszcza się układanie kostek w rzędy ukośne lub jodełkę.
Sposób ułożeni musi być zgodny z dokumentacja projektową i zatwierdzony przez Inżyniera.

5.5.2. Warunki przystapienia do robót

Kostkę na podsypce cementowo-piaskowej można układać bez środków ochronnych przed mrozem, jeżeli temperatura otoczenia jest $+5^{\circ} \mathrm{C}$ lub wyższa. Nie należy układać kostki w temperaturze $0^{\circ} \mathrm{C}$ lub niższej. Jeżeli w ciagu dnia temperatura utrzymuje się w granicach od 0 do $+5^{\circ} \mathrm{C}$, a w nocy spodziewane sa przymrozki, kostkę należy zabezpieczyć przez nakrycie materiałem o złym przewodnictwie cieplnym.

5.5.3. Ubijanie kostki

Sposób ubijania kostki powinien być dostosowany do rodzaju podsypki oraz materiału do wypełnienia spoin.
a) Kostkę na podsypce piaskowo-cementowej przy wypełnianiu spoin zaprawa cementowopiaskowa, należy ubijać dwukrotnie.

Pierwsze mocne ubicie powinno nastapić przed zalaniem spoin i spowodować obniżenie kostek do wymaganej niwelety.

Drugie - lekkie ubicie, ma na celu doprowadzenie ubijanej powierzchni kostek do wymaganego przekroju poprzecznego jezdni. Drugi ubicie następuje bezpośrednio po zalaniu spoin zaprawa cementowo-piaskowa. Zamiast drugiego ubijania można stosować wibratory płytowe lub lekkie walce wibracyjne.

Kostki, które pękną podczas ubijania powinny być wymienione na całe. Ostatni rząd kostek na zakończenie działki roboczej, przy ubijaniu należy zabezpieczyć przed przesunięciem za pomocą np. belki drewnianej umocowanej szpilkami stalowymi w podłożu.

5.5.4. Wypełnienie spoin

Zaprawę cementowo-piaskową można stosować przy nawierzchniach z kostki każdego typu układanej na podsypce cementowo-piaskowej.

Wypelnienie spoin zaprawą cementowo-piaskową powinno być wykonane z zachowaniem następujacych wymagań:

- piasek powinien odpowiadać wymaganiom wg pkt 2.5,
- cement powinien odpowiadać wymaganiom wg pkt 2.4,
- wytrzymałość zaprawy na ściskanie powinna wynosić nie mniej niż 30 MPa ,
- przed rozpoczęciem zalewania kostka powinna być oczyszczona i dobrze zwilżona wodą z dodatkiem 1\% cementu w stosunku objętościowym,
- głębokość wypełnienia spoin zaprawą cementowo-piaskową powinna wynosić około 5 cm ,
- zaprawa cementowo-piaskowa powinna całkowicie wypełnić spoiny i tworzyć monolit z kostka.

5.6. Pielęgnacja nawierzchni

Sposób pielęgnacji nawierzchni zależy od rodzaju wypełnienia spoin i od rodzaju podsypki. Pielęgnacja nawierzchni kostkowej, której spoiny są wypełnione zaprawą cementowopiaskową polega na polaniu nawierzchni woda w kilka godzin po zalaniu spoin i utrzymaniu jej w stałej wilgotności przez okres jednej doby. Następnie nawierzchnię należy przykryć piaskiem i utrzymywać w stałej wilgotności przez okres 7 dni. Po upływie od 2 do 3 tygodni - w zależności od warunków atmosferycznych, nawierzchnię należy oczyścić dokładnie z piasku i można oddać do ruchu.

6. KONTROLA JAKOŚCI ROBÓT

6.1. Ogólne zasady kontroli jakości robót

Ogólne zasady kontroli jakości robót podano w SST D-00.00.00 „Wymagania ogólne" pkt 6.

6.2. Badania przed przystapieniem do robót

Rodzaj i zakres badań dla kostek kamiennych powinien być zgodny z wymaganiami wg PN-B11100 [8].

Badanie zwykłe obejmuje sprawdzenie cech zewnętrznych i dopuszczalnych odchyłek, podanych w tablicach 2, 3, 4.

Badanie pełne obejmuje zakres badania zwykłego oraz sprawdzenie cech fizycznych i wytrzymałościowych podanych w tablicy 1.

W skład partii przeznaczonej do badań powinny wchodzić kostki jednakowego typu, rodzaju
klasy i wielkości. Wielkość partii nie powinna przekraczać 500 ton kostki.
Z partii przeznaczonej do badań należy pobrać w sposób losowy próbkę składającą się z kostek drogowych w liczbie:

- do badania zwykłego: 40 sztuk,
- do badania cech podanych w tablicy 1: 6 sztuk.

Badania zwykłe należy przeprowadzać przy każdym sprawdzaniu zgodności partii z wymaganiami normy, badanie pełne przeprowadza się na żądanie odbiorcy.

W badaniu zwykłym partię kostki należy uznać za zgodną z wymaganiami normy, jeżeli liczba sztuk niedobrych w zbadanej ilości kostek jest dla poszczególnych sprawdzań równa lub mniejsza od 4.

W przypadku gdy liczba kostek niedobrych dla jednego sprawdzenia jest większa od 4, całą partię należy uznać za niezgodną z wymaganiami.

W badaniu pełnym, partię kostki poddaną sprawdzeniu cech podanych w tablicy 1 , należy uznać za zgodną z wymaganiami normy, jeżeli wszystkie sprawdzenia dadzą wynik dodatni. Jeżeli chociaż jedno ze sprawdzeń da wynik ujemny, całą partię należy uznać za niezgodną z wymaganiami.

Badania pozostałych materiałów stosowanych do wykonania nawierzchni z kostek kamiennych, powinny obejmować wszystkie właściwości, które zostały określone w normach podanych dla odpowiednich materiałów wg pkt od 2.3 do 2.5.

6.3. Badania w czasie robót

6.3.1. Sprawdzenie podsypki

Sprawdzenie podsypki polega na stwierdzeniu jej zgodności z dokumentacją projektową oraz z wymaganiami określonymi w p. 5.4.

6.3.2. Badanie prawidłowości układania kostki
 Badanie prawidłowości układania kostki polega na:

- zmierzeniu szerokości spoin oraz powiązania spoin i sprawdzeniu zgodności z p. 5.5.6,
- zbadaniu rodzaju i gatunku użytej kostki, zgodnie z wymogami wg p. od 2.2.2 do 2.2.5,
- sprawdzeniu prawidłowości wykonania szczelin dylatacyjnych zgodnie z p. 5.5.3.

Sprawdzenie wiazania kostki wykonuje się wyrywkowo w kilku miejscach przez oględziny nawierzchni i określenie czy wiązanie odpowiada wymaganiom wg p. 5.5.

Ubicie kostki sprawdza się przez swobodne jednokrotne opuszczenie z wysokości 15 cm ubijaka o masie 25 kg na poszczególne kostki. Pod wpływem takiego uderzenia osiadanie kostek nie powinno być dostrzegane.

6.3.3. Sprawdzenie wypełnienia spoin

Badanie prawidłowości wypełnienia spoin polega na sprawdzeniu zgodności z wymaganiami zawartymi w p. 5.5.6.

Sprawdzenie wypełnienia spoin wykonuje się co najmniej w pięciu dowolnie obranych miejscach na każdym kilometrze przez wykruszenie zaprawy na długości około 10 cm i zmierzenie głębokości wypełnienia spoiny zaprawa, a przy zaprawie cementowo-piaskowej i masie zalewowej - również przez sprawdzenie przyczepności zaprawy lub masy zalewowej do kostki.

6.4. Sprawdzenie cech geometrycznych nawierzchni

6.4.1. Równość

Nierówności podłużne nawierzchni należy mierzyć 4-metrowa łatą lub planografem, zgodnie z norma BN-68/8931-04 [18].

Nierówności podłużne nawierzchni nie powinny przekraczać $1,0 \mathrm{~cm}$.
6.4.2. Spadki poprzeczne

Spadki poprzeczne nawierzchni powinny być zgodne z dokumentacją projektowa z tolerancja $\pm 0,5 \%$.

6.4.3. Rzędne wysokościowe

Różnice pomiędzy rzędnymi wykonanej nawierzchni i rzędnymi projektowanymi nie powinny przekraczać $+1 \mathrm{~cm} \mathrm{i}-2 \mathrm{~cm}$.

6.4.4. Ukształtowanie osi

Oś nawierzchni w planie nie może być przesunięta w stosunku do osi projektowanej o więcej niż $\pm 5 \mathrm{~cm}$.

6.4.5. Szerokość nawierzchni

Szerokość nawierzchni nie może różnić się od szerokości projektowanej o więcej niż $\pm 5 \mathrm{~cm}$.

6.4.6. Grubość podsypki

Dopuszczalne odchyłki od projektowanej grubości podsypki nie powinny przekraczać $\pm 1,0$ cm.
6.4.7. Częstotliwość oraz zakres badań i pomiarów

Częstotliwość oraz zakres badań i pomiarów wykonanej nawierzchni z kostek kamiennych przedstawiono w tablicy 5.

Tablica 5. Częstotliwość i zakres badań cech geometrycznych nawierzchni

Lp.	Wyszczególnienie badań i pomiarów	Minimalna częstotliwość badań i pomiarów
1	Spadki poprzeczne	2 razy na 0,1 km i w charakterystycznych punktach niwelety
2	Rzędne wysokościowe	2 razy na 0,1 km i w charakterystycznych punktach niwelety
3	Ukształtowanie osi w planie	2razy na 0,1 km i w charakterystycznych punktach niwelety
4	Szerokość nawierzchni	2 razy na 0,1 km
5	Grubość podsypki	2 razy na 0,1 km

7. OBMIAR ROBÓT

7.1. Ogólne zasady obmiaru robót

Ogólne zasady obmiaru robót podano w SST D-00.00.00 „Wymagania ogólne" pkt 7.

7.2. Jednostka obmiarowa

Jednostką obmiarową jest m^{2} (metr kwadratowy) wykonanej nawierzchni z kostki kamiennej.

8. ODBIÓR ROBÓT

8.1. Ogólne zasady odbioru robót

Ogólne zasady odbioru robót podano w SST D-00.00.00 „Wymagania ogólne" pkt 8.
Roboty uznaje się za wykonane zgodnie z dokumentacja projektowa, SST i wymaganiami Inżyniera, jeżeli wszystkie pomiary i badania z zachowaniem tolerancji według pkt 6 dały wyniki pozytywne.

8.2. Odbiór robót zanikających i ulegających zakryciu

Roboty związane z wykonaniem podsypki należą do robót ulegajacych zakryciu. Zasady ich odbioru są określone w SST D-00.00.00 „Wymagania ogólne" pkt 8.2.

9. PODSTAWA PŁATNOŚCI

9.1. Ogólne ustalenia dotyczące podstawy płatności

Ogólne ustalenia dotyczące podstawy płatności podano w SST D-00.00.00 „Wymagania ogólne" pkt 9 .

9.2. Cena jednostki obmiarowej

Cena wykonania $1 \mathrm{~m}^{2}$ nawierzchni z kostki kamiennej obejmuje:

- prace pomiarowe i roboty przygotowawcze,
- oznakowanie robót,
- dostarczenie materiałów,
- wykonanie podsypki,
- ułożenie i ubicie kostki,
- wypełnienie spoin,
- pielęgnację nawierzchni,
- przeprowadzenie badań i pomiarów wymaganych w specyfikacji technicznej.

10. PRZEPISY ZWIAZANE

10.1. Normy

1. PN-B-04101 Materiały kamienne. Oznaczanie nasiąkliwości woda
2. PN-B-04102 Materiały kamienne. Oznaczanie mrozoodporności metodą bezpośrednią
3. PN-B-04110 Materiały kamienne. Oznaczanie wytrzymałości na ściskanie
4. PN-B-04111 Materiały kamienne. Oznaczanie ścieralności na tarczy Boehmego
5. PN-B-04115 Materiały kamienne. Oznaczanie wytrzymałości kamienia na uderzenie (zwięzłości)
6. PN-B-06251 Roboty betonowe i żelbetowe. Wymagania techniczne
7. PN-B-06712 Kruszywa mineralne do betonu zwykłego
8. PN-B-11100 Materiały kamienne. Kostka drogowa
9. PN-B-19701 Cement. Cement powszechnego użytku. Skład, wymagania i ocena zgodności
10. PN-B-32250 Materiały budowlane. Woda do betonów i zapraw
11. PN-S-06100 Drogi samochodowe. Nawierzchnie z kostki kamiennej. Warunki techniczne
12. PN-S-96026 Drogi samochodowe. Nawierzchnie z kostki kamiennej nieregularnej. Wymagania techniczne i badania przy odbiorze
13. BN-69/6731-08 Cement. Transport i przechowywanie
14. BN-74/6771-04 Drogi samochodowe. Masa zalewowa
15. BN-66/6775-01 Elementy kamienne. Krawężniki uliczne, mostowe i drogowe
16. BN-80/6775- Prefabrykaty budowlane z betonu. Elementy 03/01
17. BN-80/6775- Prefabrykaty budowlane z betonu. Elementy 03/04
18. BN-68/8931-04 Drogi samochodowe. Pomiar równości nawierzchni planografem i łata.

10.2. Inne dokumenty

19. Warunki techniczne. Drogowe emulsje asfaltowe EmA-94. IBDiM - 1994 r.

D - 08.01.02

KRAWĘŻNIKI KAMIENNE

1. WSTĘP

1.1. Przedmiot SST

Przedmiotem niniejszej ogólnej specyfikacji technicznej (SST) sa wymagania dotyczace wykonania i odbioru robót związanych z ustawieniem krawężników kamiennych w trakcie robót związanych z przebudowa „Płyty Rynku" w Obrzycku.

1.2. Zakres stosowania SST

Szczegółowa specyfikacja techniczna jest stosowana jako dokument przetargowy i kontraktowy przy zlecaniu realizacji robót wymienionych w pkt. 1.1.

1.3. Zakres robót objętych SST

Ustalenia zawarte w niniejszej specyfikacji dotyczą zasad prowadzenia robót związanych z ustawieniem krawężników kamiennych granitowych

- $15 \times 30 \mathrm{~cm}$ na ławie betonowej (,zatopione")
- $15 \times 18 \mathrm{~cm}$ na podsypce piaskowej (obramowanie zieleni)
- $\quad 12 \times 20 \mathrm{~cm}$ na podsypce cementowo-piaskowej (obramowanie przy tablicy pamiątkowej)

1.4. Określenia podstawowe

1.4.1. Krawężniki kamienne - belki kamienne ograniczające chodniki dla pieszych, pasy dzielące, wyspy kierujace oraz nawierzchnie drogowe.
1.4.2. Pozostałe określenia podstawowe sa zgodne z obowiazującymi, odpowiednimi polskimi normami i z definicjami podanymi w SST D-00.00.00 „Wymagania ogólne" pkt 1.4.

1.5. Ogólne wymagania dotyczące robót

Ogólne wymagania dotyczace robót podano w SST D-00.00.00 „Wymagania ogólne" pkt 1.5.

2. MATERIAŁY

2.1. Ogólne wymagania dotyczące materiałów

Ogólne wymagania dotyczace materiałów, ich pozyskiwania i składowania, podano w SST D00.00.00 "Wymagania ogólne" pkt 2.

2.2. Stosowane materiały

Materiałami stosowanymi do wykonania krawężników kamiennych sa:

- krawężniki odpowiadajace wymaganiom BN-66/6775-01 [9],
- piasek na podsypke,
- cement do podsypki cementowo-piaskowej i zaprawy,
- woda,
oraz materiały do wykonania odpowiedniego rodzaju ław pod ustawienie krawężników.

2.3. Krawężniki kamienne - klasyfikacja

2.3.1. Typy

W zależności od przeznaczenia rozróżnia się trzy typy krawężników:
U - uliczne,
M - mostowe,

D - drogowe.

2.3.2. Rodzaje

W zależności od kształtu przekroju poprzecznego, względnie od faktury obróbki powierzchni widocznych, rozróżnia się w każdym z typów dwa rodzaje krawężników:

AiB.

2.3.3. Wielkości

W zależności od wymiaru wysokości krawężnika rozróżnia się następujące wielkości: krawężnik uliczny o wysokości 35 i 25 cm , krawężnik mostowy o wysokości 23 i 18 cm , krawężnik drogowy o wysokości 20 i 22 cm .

2.3.4. Klasy

W zależności od cech fizycznych i wytrzymałościowych materiału kamiennego, użytego do wyrobu krawężników, rozróżnia się trzy klasy:
klasa I, klasa II, klasa III.

Przykład oznaczenia krawężnika kamiennego ulicznego prostego (UP) rodzaju B, wielkości 35, klasy II: krawężnik UPB35II BN-66/6775-01 [9].

2.4. Krawężniki kamienne - wymagania techniczne

2.4.1. Cechy fizyczne i wytrzymałościowe

Materiałem do wyrobu krawężników sa bloki kamienne ze skał magmowych, osadowych lub metamorficznych, klasy I i ll wg BN-62/6716-04 [8] o cechach fizycznych i wytrzymałościowych określonych w tablicy 1.

Tablica 1. Cechy fizyczne i wytrzymałościowe krawężników kamiennych

Lp.	Cechy fizyczne i wytrzymałościowe	Klasa		
	I	II	III	
1	Wytrzymałość na ściskanie w stanie powietrzno-suchym, w kG/cm², co najmniej	1200	1000	600
2	Ścieralność na tarczy Boehmego, w cm, nie więcej niż	0,25	0,5	0,75
3	Wytrzymałość na uderzenia, ilość uderzeń, nie mniej niż	13	9	6
4	Nasiakliwość woda, w \%, nie więcej niż	0,5	1,5	3,0
5	Odporność na zamrażanie, w cyklach	nie bada się	całkowita wg PN-B- 01080 [1]	dobra wg PN-B- $01080[1]$

2.4.2. Kształt i wymiary

Rys. 5. Krawężnik drogowy rodzaju A

Rys. 6. Krawężnik drogowy rodzaju B

Tablica 4. Wymiary krawężników drogowych

Wymiar (w cm)	Rodzaj A i B	Dopuszczalne odchyłki, cm	
h	20	+3	-2
b	18	dla A: $\pm 0,5$	dla B:

Przebudowa „Płyty Rynku" w Obrzycku

I	od 40 do 120	-

2.4.3. Wygląd zewnętrzny

W ocenie wyglądu zewnętrznego krawężników kamiennych - ulicznych, mostowych i drogowych, należy brać pod uwagę ustalenia normy BN-66/6775-01 [9].

2.4.4. Beton i jego składniki

2.4.4.1. Beton do wykonani ław pod krawężniki

Należy stosować beton wg PN-B-06250 [2], klasy B 15 .

2.4.4.2. Cement

Cement stosowany do betonu powinien być cementem portlandzkim klasy nie niższej niż „32,5" wg PN-B-19701 [10].

Przechowywanie cementu powinno być zgodne z BN-88/6731-08 [12].

2.4.4.3. Kruszywo

Kruszywo powinno odpowiadać wymaganiom PN-B-06712 [5].
Kruszywo należy przechowywać w warunkach zabezpieczających je przed zanieczyszczeniem, zmieszaniem z kruszywami innych asortymentów, gatunków i marek.

2.4.4.4. Woda

Woda powinna być odmiany „1" i odpowiadać wymaganiom PN-B-32250 [11].

2.5. Dopuszczalne wady i uszkodzenia

Dopuszczalne wady i uszkodzenia dla wszystkich typów krawężników kamiennych podaje tablica 5.

Tablica 5. Dopuszczalne wady i uszkodzenia

Rodzaj uszkodzeń		Typy krawężników				
		Uliczne		Mostowe	Drogowe	
		proste	łukow e		rodzaj ,,A"	$\begin{aligned} & \text { rodzaj } \\ & \text { „B" } \end{aligned}$
skrzywienie (wichrowatość powierzchni)	licowych	0,3 cm				$0,5 \mathrm{~cm}$
	bocznych	nie sprawdza się				
	stykowych		0,2 cm		$\begin{aligned} & 0,3 \\ & \mathrm{~cm} \end{aligned}$	
	spodu	nie sprawdza się				
wady obróbki	licowych	dopuszcza się na długości 1 m danej powierzch-ni jedno wgłębienie wielkości do $5 \mathrm{~cm}^{2}$, nie głę-bsze niż $0,5 \mathrm{~cm}$, nie wynikajace z techniki wy- konania faktury				
	bocznych	wgłębienie do $1,5 \mathrm{~cm}$ dopuszcza się bez ograni-czeń. Wypukłość poza lico				

2.6. Przechowywanie krawężników

Krawężniki mogą być przechowywane na składowiskach otwartych, posegregowane wg typów, rodzajów, odmian i wielkości.

Dopuszcza się składowanie krawężników prostych w kilku warstwach, przy zastosowaniu drewnianych podkładek pomiędzy poszczególnymi warstwami, przy czym suma wysokości warstw nie powinna przekraczać 1,2 m.

Krawężnik drogowy rodzaju „B" dozwala się układać w stosy, bez przekładek drewnianych, przy czym wysokość stosów nie powinna przekraczać $1,4 \mathrm{~m}$.

2.7. Materiały na podsypkę i do zapraw

2.7.1. Piasek

Piasek na podsypkę cementowo-piaskowa powinien odpowiadać wymaganiom PN-B-06712 [4], a do zaprawy cementowo-piaskowej PN-B-06711 [3].

2.7.2. Cement

Cement stosowany do zaprawy cementowej i do podsypki cementowo-piaskowej powinien być cementem portlandzkim klasy nie niższej niż „32,5" odpowiadajacy wymaganiom PN-B-19701 [6].

2.7.3. Woda

Woda powinna być odmiany „1" i odpowiadać wymaganiom PN-B-32250 [7].

2.8. Ława betonowa pod krawęzniki

2.8.1. Wykonanie koryta pod ławy

Koryto pod ławy należy wykonywać zgodnie z PN-B-06050 [1].
Wymiary wykopu powinny odpowiadać wymiarom ławy w planie z uwzględnieniem w szerokości dna wykopu ew. konstrukcji szalunku.

Wskaźnik zagęszczenia dna wykonanego koryta pod ławę powinien wynosić co najmniej 0,97 według normalnej metody Proctora.

2.8.2. Wykonanie ław

Wykonanie ław powinno być zgodne z BN-64/8845-02 [16].

2.8.3. Ława betonowa

Ławy betonowe zwykłe w gruntach spoistych wykonuje się bez szalowania, przy gruntach sypkich należy stosować szalowanie.

Ławy betonowe z oporem wykonuje się w szalowaniu. Beton rozścielony w szalowaniu lub bezpośrednio w korycie powinien być wyrównywany warstwami. Betonowanie ław należy wykonywać zgodnie z wymaganiami PN-B-06251 [3], przy czym należy stosować co 50 m szczeliny dylatacyjne wypełnione bitumiczną masa zalewowa.

3. SPRZĘT

3.1. Ogólne wymagania dotyczące sprzętu

Ogólne wymagania dotyczące sprzętu podano w SST D-00.00.00 „Wymagania ogólne" pkt 3.

3.2. Sprzęt do ustawiania krawężników

Roboty wykonuje się ręcznie przy zastosowaniu:

- betoniarek do wytwarzania zapraw oraz przygotowania podsypki cementowo-piaskowej,
- wibratorów płytowych do zagęszczania podsypki.

4. TRANSPORT

4.1. Ogólne wymagania dotyczące transportu

Ogólne wymagania dotyczące transportu podano w SST D-00.00.00 „Wymagania ogólne" pkt 4.

4.2. Transport krawężników

Krawężniki kamienne moga być przewożone dowolnymi środkami transportowymi.
Krawężniki należy układać na podkładach drewnianych, rzędami, długością w kierunku jazdy środka transportowego.

W celu zabezpieczenia powierzchni obrobionych przed bezpośrednim stykiem, należy je do transportu zabezpieczyć przekładkami splecionymi ze słomy lub wełny drzewnej, przy czym grubość tych przekładek nie powinna być mniejsza niż 5 cm .

Krawężniki drogowe rodzaju „B" można przewozić bez dodatkowego zabezpieczenia, układać w dwu lub więcej warstwach, nie wyżej jednak jak do wysokości ścian bocznych środka transportowego.

4.3. Transport pozostałych materiałów

Transport cementu i kruszyw do wykonania ław i na podsypkę powinien odpowiadać wymaganiom wg SST D-08.01.01 „Krawężniki betonowe".

5. WYKONANIE ROBÓT

5.1. Ogólne zasady wykonania robót

Ogólne zasady wykonania robót podano w SST D-00.00.00 „Wymagania ogólne" pkt 5.

5.2. Wykonanie koryta pod ławy

Koryto pod ławy należy wykonywać zgodnie z PN-B-06050 [2].
Wymiary wykopu powinny odpowiadać wymiarom ławy w planie z uwzględnieniem w szerokości dna wykopu konstrukcji szalunku.

Wskaźnik zagęszczenia dna wykonanego koryta pod ławę powinien wynosić co najmniej 0,97 według normalnej metody Proctora.

5.3. Wykonanie ław

Wykonanie ław powinno być zgodne z warunkami podanymi w SST D-08.01.01 „Krawężniki betonowe" pkt 5.

5.4. Ustawienie krawężników kamiennych

Ustawianie krawężników kamiennych i wypełnianie spoin powinno być zgodne z warunkami podanymi w SST D-08.01.01 „Krawężniki betonowe" pkt 5.

6. KONTROLA JAKOŚCI ROBÓT

6.1. Ogólne zasady kontroli jakości robót

Ogólne zasady kontroli jakości robót podano w SST D-00.00.00 „Wymagania ogólne" pkt 6.

6.2. Badania przed przystapieniem do robót

6.2.1. Badania krawężników

Przed przystapieniem do robót Wykonawca powinien wykonać badania materiałów przeznaczonych do ustawienia krawężników kamiennych i przedstawić wyniki tych badań Inżynierowi do akceptacji.

6.2.1. Badania krawężników

Badania krawężników kamiennych obejmuja:

- sprawdzenie cech zewnętrznych,
- badania laboratoryjne.

Sprawdzenie cech zewnętrznych obejmuje:

- sprawdzenie kształtu, wymiarów i wyglądu zewnętrznego,
- sprawdzenie wad i uszkodzeń.

Badanie laboratoryjne obejmuje:

- badanie nasiąkliwości woda,
- badanie odporności na zamrażanie,
- badanie wytrzymałości na ściskanie,
- badanie ścieralności na tarczy Boehmego,
- badanie wytrzymałości na uderzenie.

Sprawdzenie cech zewnętrznych należy przeprowadzać przy każdorazowym odbiorze partii krawężników. Badanie laboratoryjne należy przeprowadzać na polecenie Inżyniera na próbkach materiału kamiennego, z którego wykonano krawężniki, a w przypadkach spornych - na próbkach wyciętych z zakwestionowanych krawężników, zgodnie z wymaganiami tablicy 1.

W skład partii przeznaczonej do badań powinny wchodzić krawężniki jednakowego typu, klasy, rodzaju, odmiany i wielkości. Wielkość partii nie powinna przekraczać 400 sztuk.

W przypadku przedstawienia większej ilości krawężników, należy dostawę podzielić na partie składajace się co najwyżej z 400 sztuk.

Pobieranie próbek materiału kamiennego należy przeprowadzać wg PN-B-06720 [5].

Sprawdzenie kształtu i wymiarów należy przeprowadzać poprzez oględziny zewnętrzne zgodnie z wymaganiami tablicy 2, 3 lub 4 oraz pomiar przy pomocy linii z podziałką milimetrową z dokładnością do 0,1 cm.

Sprawdzenie równości powierzchni obrobionych przeprowadzać należy przy pomocy linii metalowej, ustawionej wzdłuż krawędzi i po przekątnych sprawdzanej powierzchni oraz pomiar odchyleń z dokładnością do $0,1 \mathrm{~cm}$, zgodnie z wymaganiami tablicy 2,3 lub 4.

Sprawdzenie krawędzi prostych przeprowadzać należy przy pomocy linii metalowej.
Sprawdzenie szczerb i uszkodzeń przeprowadzać należy poprzez oględziny zewnętrzne, policzenie ilości szczerb i uszkodzeń oraz pomiar ich wielkości z dokładnością do $0,1 \mathrm{~cm}$, zgodnie z wymaganiami tablicy 5 .

Sprawdzenie faktury powierzchni przeprowadza się wizualnie przez porównanie z wzorem.
Ocenę wyników sprawdzenia cech zewnętrznych oraz ocenę wyników badań laboratoryjnych należy przeprowadzić wg BN-66/6775-01 [9].

6.2.2. Badania pozostałych materiałów

Badania pozostałych materiałów stosowanych przy ustawieniu krawężników kamiennych powinny obejmować wszystkie właściwości, które zostały określone w normach podanych dla odpowiednich materiałów wg pkt 2.

6.3. Badania w czasie robót

W czasie robót należy sprawdzać:

- wykonanie koryta pod ławe,
- wykonanie ław,
- ustawienie krawężników i wypełnienie spoin,
zgodnie z warunkami określonymi w SST D-08.01.01 „Krawężniki betonowe".

7. OBMIAR ROBÓT

7.1. Ogólne zasady obmiaru robót

Ogólne zasady obmiaru robót podano w SST D-00.00.00 „Wymagania ogólne" pkt 7.

7.2. Jednostka obmiarowa

Jednostką obmiarowa jest m (metr) wykonanego krawężnika kamiennego.

8. ODBIÓR ROBÓT

8.1. Ogólne zasady odbioru robót

Ogólne zasady odbioru robót podano w sST D-00.00.00 „Wymagania ogólne" pkt 8.
Roboty uznaje się za wykonane zgodnie z dokumentacja projektowa, SST i wymaganiami Inżyniera, jeżeli wszystkie pomiary i badania z zachowaniem tolerancji wg pkt 6 dały wyniki pozytywne.

8.2. Odbiór robót zanikajacych i ulegajaccych zakryciu

Odbiorowi robót zanikających i ulegajacych zakryciu podlegaja:

- wykonanie koryta pod ławe,
- wykonanie ławy,
- wykonanie podsypki.

9. PODSTAWA PŁATNOŚCI

9.1. Ogólne ustalenia dotyczące podstawy płatności

Ogólne ustalenia dotyczące podstawy płatności podano w SST D-00.00.00 „Wymagania ogólne" pkt 9 .

9.2. Cena jednostki obmiarowej

Cena wykonania 1 m krawężnika kamiennego obejmuje:

- prace pomiarowe i roboty przygotowawcze,
- dostarczenie materiałów na miejsce wbudowania,
- wykonanie wykopu pod ławę,
- ew, wykonanie szalunku,
- wykonanie ławy,
- ustawienie krawężników na podsypce,
- wypełnienie spoin,
- zasypanie zewnętrznej ściany krawężnika gruntem i ubicie,
- przeprowadzenie badań i pomiarów wymaganych w specyfikacji technicznej.

10. PRZEPISY ZWIAZANE

Normy

1. PN-B-01080 Kamień dla budownictwa i drogownictwa. Klasyfikacja i zastosowanie
2. PN-B-06050 Roboty ziemne budowlane
3. PN-B-06711 Kruszywa mineralne. Piasek do zapraw budowlanych
4. PN-B-06712 Kruszywa mineralne do betonu zwykłego
5. PN-B-06720 Pobieranie próbek materiałów kamiennych
6. PN-B-19701 Cement. Cement powszechnego użytku. Skład, wymagania i ocena zgodności
7. PN-B-32250 Materiały budowlane. Woda do betonów i zapraw
8. BN-62/6716-04 Kamień dla budownictwa i drogownictwa. Bloki surowe
9. BN-66/6775-01 Elementy kamienne. Krawężniki uliczne, mostowe i drogowe.

D-08.02.02

CHODNIK Z BRUKOWEJ
KOSTKI BETONOWEJ

1. WSTĘP

1.1. Przedmiot SST

Przedmiotem niniejszej szczegółowej specyfikacji technicznej (SST) sa wymagania dotyczace wykonania i odbioru robót związanych z wykonaniem chodnika z brukowej kostki betonowej „LIDO" w trakcie robót związanych z przebudowa „Płyty Rynku" w Obrzycku.

1.2. Zakres stosowania SST

Szczegółowa specyfikacja techniczna jest stosowana jako dokument przetargowy i kontraktowy przy zlecaniu realizacji robót wymienionych w pkt. 1.1.

1.3. Zakres robót objętych SST

Ustalenia zawarte w niniejszej specyfikacji dotyczą zasad prowadzenia robót związanych z wykonaniem chodnika z brukowej kostki betonowej „LIDO" grubości 8 cm .

1.4. Określenia podstawowe

1.4.1. Betonowa kostka brukowa - kształtka wytwarzana z betonu metoda wibroprasowania. Produkowana jest jako kształtka jednowarstwowa lub w dwóch warstwach połaczonych ze soba trwale w fazie produkcji.
1.4.2. Pozostałe określenia podstawowe sa zgodne z obowiązującymi, odpowiednimi polskimi normami i z definicjami i z definicjami podanymi w SST D-00.00.00 „Wymagania ogólne" pkt 1.4.

1.5. Ogólne wymagania dotyczące robót

Ogólne wymagania dotyczące robót podano w SST D-00.00.00 „Wymagania ogólne" pkt 1.5.

2. MATERIAŁY

2.1. Ogólne wymagania dotyczące materiałów

Ogólne wymagania dotyczace materiałów, ich pozyskiwania i składowania, podano w SST D00.00.00 „Wymagania ogólne" pkt 2.

2.2. Betonowa kostka brukowa - wymagania

2.2.1. Aprobata techniczna

Warunkiem dopuszczenia do stosowania betonowej kostki brukowej w budownictwie drogowym jest posiadanie aprobaty technicznej, wydanej przez uprawniona jednostkę.

2.2.2. Wygląd zewnętrzny

Struktura wyrobu powinna być zwarta, bez rys, pęknięć, plam i ubytków.
Powierzchnia górna kostek powinna być równa i szorstka, a krawędzie kostek równe i proste, wklęśnięcia nie powinny przekraczać 2 mm dla kostek o grubości $\leq 80 \mathrm{~mm}$.

2.2.3. Kształt, wymiary i kolor kostki brukowej

Do wykonania nawierzchni chodnika stosuje się betonową kostkę brukową "LIDO" o grubości
80 mm . Kostki o takiej grubości są produkowane w kraju.
Tolerancje wymiarowe wynosza:

- na długości $\pm 3 \mathrm{~mm}$,
- na szerokości $\pm 3 \mathrm{~mm}$,
- na grubości $\pm 5 \mathrm{~mm}$.
2.2.4. Cechy fizykomechaniczne betonowych kostek brukowych

Betonowe kostki brukowe powinny mieć cechy fizykomechaniczne określone w tablicy 1.
Tablica 1. Cechy fizykomechaniczne betonowych kostek brukowych

Lp.	Cechy	Wartość
1	Wytrzymałość na ściskanie po 28 dniach, MPa, co najmniej a) średnia z sześciu kostek b) najmniejsza pojedynczej kostki	60
2	Nasiąkliwość wodą wg PN-B-06250 [2], \%, nie więcej niż	50
3	Odporność na zamrażanie, po 50 cyklach zamrażania, wg PN-B-06250 [2]: a) pęknięcia próbki b) strata masy, \%, nie więcej niż c) obniżenie wytrzymałości na ściskanie w stosunku do wytrzymałości próbek nie zamrażanych, \%, nie więcej niż	brak 5
4	Ścieralność na tarczy Boehmego wg PN-B-04111 [1], mm, nie więcej niż	4

2.3. Materiały do produkcji betonowych kostek brukowych

2.3.1. Cement

Do produkcji kostki brukowej należy stosować cement portlandzki, bez dodatków, klasy nie niższej niż „32,5". Zaleca się stosowanie cementu o jasnym kolorze. Cement powinien odpowiadać wymaganiom PN-B-19701 [4].

2.3.2. Kruszywo do betonu

Należy stosować kruszywa mineralne odpowiadajace wymaganiom PN-B-06712 [3].
Uziarnienie kruszywa powinno być ustalone w recepcie laboratoryjnej mieszanki betonowej, przy założonych parametrach wymaganych dla produkowanego wyrobu.

2.3.3. Woda

Woda powinna być odmiany „1" i odpowiadać wymaganiom PN-B-32250 [5].

2.3.4. Dodatki

Do produkcji kostek brukowych stosuje się dodatki w postaci plastyfikatorów barwników, zgodnie z receptą laboratoryjna.

Plastyfikatory zapewniaja gotowym wyrobom większą wytrzymałość, mniejszą nasiąkliwość i większą odporność na niskie temperatury i działanie soli.

Stosowane barwniki powinny zapewnić kostce trwałe wybarwienie. Powinny to być barwniki nieorganiczne.

3. SPRZĘT

3.1. Ogólne wymagania dotyczące sprzętu

Ogólne wymagania dotyczące sprzętu podano w SST D-00.00.00 „Wymagania ogólne" pkt 3.

3.2. Sprzęt do wykonania chodnika z kostki brukowej

Małe powierzchnie chodnika z kostki brukowej wykonuje się ręcznie.
Jeśli powierzchnie są duże, a kostki brukowe maja jednolity kształt i kolor, można stosować mechaniczne urządzenia układające. Urządzenie składa się z wózka i chwytaka sterowanego hydraulicznie, służącego do przenoszenia z palety warstwy kostek na miejsce ich ułożenia.

Do zagęszczenia nawierzchni stosuje się wibratory płytowe z osłoną z tworzywa sztucznego.

4. TRANSPORT

4.1. Ogólne wymagania dotyczace transportu

Ogólne wymagania dotyczące transportu podano w SST D-00.00.00 „Wymagania ogólne" pkt 4.

4.2. Transport betonowych kostek brukowych

Uformowane w czasie produkcji kostki betonowe układane sa warstwowo na palecie. Po uzyskaniu wytrzymałości betonu min. 0,7 wytrzymałości projektowanej, kostki przewożone są na stanowisko, gdzie specjalne urządzenie pakuje je w folię i spina taśmą stalowa, co gwarantuje transport samochodami w nienaruszonym stanie.

Kostki betonowe można również przewozić samochodami na paletach transportowych producenta.

5. WYKONANIE ROBÓT

5.1. Ogólne zasady wykonania robót

Ogólne zasady wykonania robót podano w SST D-00.00.00 „Wymagania ogólne" pkt 5.

5.2. Koryto pod chodnik

Koryto wykonane w podłożu powinno być wyprofilowane zgodnie z projektowanymi spadkami podłużnymi i poprzecznymi oraz zgodnie z wymaganiami podanymi w SST D-04.01.01 „Koryto wraz z profilowaniem i zagęszczeniem podłoża". Wskaźnik zagęszczenia koryta nie powinien być mniejszy niż 0,97 według normalnej metody Proctora.

Jeżeli dokumentacja projektowa nie określa inaczej, to nawierzchnię chodnika z kostki brukowej można wykonywać bezpośrednio na podłożu z gruntu piaszczystego o WP ≥ 35 [6] w uprzednio wykonanym korycie.

5.3. Podsypka

Na podsypkę należy stosować piasek odpowiadający wymaganiom PN-B-06712 [3].
Grubość podsypki po zagęszczeniu powinna zawierać się w granicach od 3 do
5 cm .
Podsypka powinna być zwilżona woda, zagęszczona i wyprofilowana.

5.4. Układanie chodnika z betonowych kostek brukowych

Z uwagi na różnorodność kształtów i kolorów produkowanych kostek, możliwe jest ułożenie dowolnego wzoru - wcześniej ustalonego w dokumentacji projektowej lub zaakceptowanego przez Inżyniera.

Kostkę układa się na podsypce lub podłożu piaszczystym w taki sposób, aby szczeliny między kostkami wynosiły od 2 do 3 mm . Kostkę należy układać ok. $1,5 \mathrm{~cm}$ wyżej od projektowanej niwelety chodnika, gdyż w czasie wibrowania (ubijania) podsypka ulega zagęszczeniu.

Po ułożeniu kostki, szczeliny należy wypełnić piaskiem, a następnie zamieść powierzchnię ułożonych kostek przy użyciu szczotek ręcznych lub mechanicznych i przystapić do ubijania nawierzchni chodnika.

Do ubijania ułożonego chodnika z kostek brukowych, stosuje się wibratory płytowe z osłoną z tworzywa sztucznego dla ochrony kostek przed uszkodzeniem i zabrudzeniem. Wibrowanie należy
prowadzić od krawędzi powierzchni ubijanej w kierunku środka i jednocześnie w kierunku poprzecznym kształtek.

Do zagęszczania nawierzchni z betonowych kostek brukowych nie wolno używać walca.
Po ubiciu nawierzchni należy uzupełnić szczeliny materiałem do wypełnienia i zamieść nawierzchnię. Chodnik z wypełnieniem spoin piaskiem nie wymaga pielęgnacji - może być zaraz oddany do użytkowania.

6. KONTROLA JAKOŚCI ROBÓT

6.1. Ogólne zasady kontroli jakości robót

Ogólne zasady kontroli jakości robót podano w SST D-00.00.00 „Wymagania ogólne" pkt 6.

6.2. Badania przed przystapieniem do robót

Przed przystapieniem do robót Wykonawca powinien sprawdzić, czy producent kostek brukowych posiada aprobatę techniczna.

Pozostałe wymagania określono w SST D-05.02.23 „Nawierzchnia z kostki brukowej betonowej".

6.3. Badania w czasie robót

6.3.1. Sprawdzenie podłoża

Sprawdzenie podłoża polega na stwierdzeniu zgodności z dokumentacja projektowa i odpowiednimi SST.

Dopuszczalne tolerancje wynoszą dla:

- głębokości koryta:
- o szerokości do 3 m : $\pm 1 \mathrm{~cm}$,
- o szerokości powyżej $3 \mathrm{~m}: \pm 2 \mathrm{~cm}$,
- szerokości koryta: $\pm 5 \mathrm{~cm}$.

6.3.2. Sprawdzenie podsypki

Sprawdzenie podsypki w zakresie grubości i wymaganych spadków poprzecznych i podłużnych polega na stwierdzeniu zgodności z dokumentacja projektowa oraz pkt 5.3 niniejszej SST.
6.3.3. Sprawdzenie wykonania chodnika

Sprawdzenie prawidłowości wykonania chodnika z betonowych kostek brukowych polega na stwierdzeniu zgodności wykonania z dokumentacja projektowa oraz wymaganiami pkt 5.5 niniejszej OST:

- pomierzenie szerokości spoin,
- sprawdzenie prawidłowości ubijania (wibrowania),
- sprawdzenie prawidłowości wypełnienia spoin,
- sprawdzenie, czy przyjęty deseń (wzór) i kolor nawierzchni jest zachowany.

6.4. Sprawdzenie cech geometrycznych chodnika

6.4.1. Sprawdzenie równości chodnika

Sprawdzenie równości nawierzchni przeprowadzać należy łata co najmniej raz na każde 150 do $300 \mathrm{~m}^{2}$ ułożonego chodnika i w miejscach watpliwych, jednak nie rzadziej niż raz na 50 m chodnika. Dopuszczalny prześwit pod łatą 4 m nie powinien przekraczać $\quad 1,0 \mathrm{~cm}$.
6.4.2. Sprawdzenie profilu podłużnego

Sprawdzenie profilu podłużnego przeprowadzać należy za pomocą niwelacji, biorąc pod uwagę punkty charakterystyczne, jednak nie rzadziej niż co 100 m .

Odchylenia od projektowanej niwelety chodnika w punktach załamania niwelety nie moga przekraczać $\pm 3 \mathrm{~cm}$.

6.4.3. Sprawdzenie przekroju poprzecznego

Sprawdzenie przekroju poprzecznego dokonywać należy szablonem z poziomica, co najmniej raz na każde 150 do $300 \mathrm{~m}^{2}$ chodnika i w miejscach watpliwych, jednak nie rzadziej niż co 50 m . Dopuszczalne odchylenia od projektowanego profilu wynosza $\pm 0,3 \%$.

7. OBMIAR ROBÓT

7.1. Ogólne zasady obmiaru robót

Ogólne zasady obmiaru robót podano w SST D-00.00.00 „Wymagania ogólne" pkt 7.

7.2. Jednostka obmiarowa

Jednostką obmiarową jest m^{2} (metr kwadratowy) wykonanego chodnika z brukowej kostki betonowej.

8. ODBIÓR ROBÓT

Ogólne zasady odbioru robót podano w SST D-00.00.00 „Wymagania ogólne" pkt 8.
Roboty uznaje się za wykonane zgodnie z dokumentacja projektowa, SST i wymaganiami Inżyniera, jeżeli wszystkie pomiary i badania z zachowaniem tolerancji wg pkt 6 dały wyniki pozytywne.

9. PODSTAWA PŁATNOŚCI

9.1. Ogólne ustalenia dotyczące podstawy płatności

Ogólne ustalenia dotyczące podstawy płatności podano w SST D-00.00.00 „Wymagania ogólne" pkt 9 .

9.2. Cena jednostki obmiarowej

Cena wykonania $1 \mathrm{~m}^{2}$ chodnika z brukowej kostki betonowej obejmuje:

- prace pomiarowe i roboty przygotowawcze,
- dostarczenie materiałów na miejsce wbudowania,
- wykonanie koryta,
- wykonanie podsypki,
- ułożenie kostki brukowej wraz z zagęszczeniem i wypełnieniem szczelin,
- przeprowadzenie badań i pomiarów wymaganych w specyfikacji technicznej.

10. PRZEPISY ZWIAZANE

10.1. Normy

1. PN-B-04111 Materiały kamienne. Oznaczanie ścieralności na tarczy Boehmego
2. PN-B-06250 Beton zwykły
3. PN-B-06712 Kruszywa mineralne do betonu zwykłego
4. PN-B-19701 Cement. Cement powszechnego użytku. Skład, wymagania i ocena zgodności
5. PN-B-32250 Materiały budowlane. Woda do betonów i zapraw
6. BN-68/8931- Drogi samochodowe. Oznaczenie wskaźnika 01 piaskowego.

10.2. Inne dokumenty

Nie występuja.

D-08.03.01
BETONOWE OBRZEŻA CHODNIKOWE

1. WSTĘP

1.1. Przedmiot SST

Przedmiotem niniejszej szczegółowej specyfikacji technicznej (SST) są wymagania dotyczace wykonania i odbioru robót związanych z ustawieniem betonowego obrzeża chodnikowego w trakcie robót związanych z przebudowa „Płyty Rynku" w Obrzycku.

1.2. Zakres stosowania SST

Szczegółowa specyfikacja techniczna jest stosowana jako dokument przetargowy i kontraktowy przy zlecaniu realizacji robót wymienionych w pkt. 1.1.

1.3. Zakres robót objętych SST

Ustalenia zawarte w niniejszej specyfikacji dotycza zasad prowadzenia robót związanych z ustawieniem betonowego obrzeża chodnikowego $20 \times 6 \mathrm{~cm}$ (kolor czerwony).

1.4. Określenia podstawowe

1.4.1. Obrzeża chodnikowe - prefabrykowane belki betonowe rozgraniczajace jednostronnie lub dwustronnie ciagi komunikacyjne od terenów nie przeznaczonych do komunikacji.
1.4.2. Pozostałe określenia podstawowe są zgodne z obowiązujacymi, odpowiednimi polskimi normami i definicjami podanymi w SST D-00.00.00 „Wymagania ogólne" pkt 1.4.

1.5. Ogólne wymagania dotyczace robót

Ogólne wymagania dotyczące robót podano w SST D-00.00.00 „Wymagania ogólne" pkt 1.5.

2. MATERIAŁY

2.1. Ogólne wymagania dotyczące materiałów

Ogólne wymagania dotyczące materiałów, ich pozyskiwania i składowania podano w SST D00.00.00 "Wymagania ogólne" pkt 2.

2.2. Stosowane materiały

Materiałami stosowanymi sa:

- obrzeża odpowiadające wymaganiom BN-80/6775-04/04 [9] i BN-80/6775-03/01 [8],
- piasek do wykonania ław,

2.3. Betonowe obrzeża chodnikowe - klasyfikacja

W zależności od przekroju poprzecznego rozróżnia się dwa rodzaje obrzeży:

- obrzeże niskie - On,
- obrzeże wysokie - Ow.

W zależności od dopuszczalnych wielkości i liczby uszkodzeń oraz odchyłek wymiarowych obrzeża dzieli się na:

- gatunek 1 - G1,
- gatunek 2 - G2.

Przykład oznaczenia betonowego obrzeża chodnikowego niskiego (On) o wymiarach $6 \times 20 \times$
75 cm gat. 1:
obrzeże On - I/6/20/75 BN-80/6775-03/04 [9].

2.4. Betonowe obrzeża chodnikowe - wymagania techniczne

2.4.1. Wymiary betonowych obrzeży chodnikowych

Kształt obrzeży betonowych przedstawiono na rysunku 1, a wymiary podano w tablicy 1.

Rysunek 1. Kształt betonowego obrzeża chodnikowego
Tablica 1. Wymiary obrzeży

Rodzaj	Wymiary obrzeży, cm			
obrzeża	1	b	h	r
On	75	6	20	3
	100	6	20	3
Ow	75	8	30	3
	90	8	24	3
	100	8	30	3

2.4.2. Dopuszczalne odchyłki wymiarów obrzeży

Dopuszczalne odchyłki wymiarów obrzeży podano w tablicy 2.
Tablica 2. Dopuszczalne odchyłki wymiarów obrzeży

Rodzaj wymiaru	Dopuszczalna odchyłka, m	
	Gatunek 1	Gatunek 2
l	± 8	± 12
b, h	± 3	± 3

2.4.3. Dopuszczalne wady i uszkodzenia obrzeży

Powierzchnie obrzeży powinny być bez rys, pęknięć i ubytków betonu, o fakturze z formy lub zatartej. Krawędzie elementów powinny być równe i proste.

Dopuszczalne wady oraz uszkodzenia powierzchni i krawędzi elementów nie powinny przekraczać wartości podanych w tablicy 3.

Tablica 3. Dopuszczalne wady i uszkodzenia obrzeży

Rodzaj wad i uszkodzeń	Dopuszczalna wielkość wad i uszkodzeń		
	Gatunek 1	Gatunek 2	
Wklęsłość lub wypukłość powierzchni i krawędzi w mm	2	3	
Szczerby i uszkodzenia krawędzi i naroży	ograniczajacych powierzchnie górne (ścieralne)	niedopuszczalne	
	ograniczających pozostałe		

powierzchnie: liczba, max długość, mm, max głębokość, mm, max	20	2

2.4.4. Składowanie

Betonowe obrzeża chodnikowe mogą być przechowywane na składowiskach otwartych, posegregowane według rodzajów i gatunków.

Betonowe obrzeża chodnikowe należy układać z zastosowaniem podkładek i przekładek drewnianych o wymiarach co najmniej: grubość $2,5 \mathrm{~cm}$, szerokość 5 cm , długość minimum 5 cm większa niż szerokość obrzeża.
2.4.5. Beton i jego składniki

Do produkcji obrzeży należy stosować beton według PN-B-06250 [2], klasy B 25 i B 30 .

3. SPRZĘT

3.1. Ogólne wymagania dotyczące sprzętu

Ogólne wymagania dotyczące sprzętu podano w SST D-00.00.00 „Wymagania ogólne" pkt 3.

3.2. Sprzęt do ustawiania obrzeży

Roboty wykonuje się ręcznie przy zastosowaniu drobnego sprzętu pomocniczego.

4. TRANSPORT

4.1. Ogólne wymagania dotyczące transportu

Ogólne wymagania dotyczące transportu podano w SST D-00.00.00 „Wymagania ogólne" pkt 4.

4.2. Transport obrzeży betonowych

Betonowe obrzeża chodnikowe mogą być przewożone dowolnymi środkami transportu po osiągnięciu przez beton wytrzymałości minimum 0,7 wytrzymałości projektowanej.

Obrzeża powinny być zabezpieczone przed przemieszczeniem się i uszkodzeniami w czasie transportu.

4.3. Transport pozostałych materiałów

Transport pozostałych materiałów podano w SST D-08.01.02 „Krawężniki kamienne".

5. WYKONANIE ROBÓT

5.1. Ogólne zasady wykonania robót

Ogólne zasady wykonania robót podano w SST D-00.00.00 „Wymagania ogólne" pkt 5.

5.2. Wykonanie koryta

Koryto pod podsypkę należy wykonywać zgodnie z PN-B-06050 [1].
Wymiary wykopu powinny odpowiadać wymiarom ławy w planie z uwzględnieniem w szerokości dna wykopu ew. konstrukcji szalunku.

5.3. Podłoże lub podsypka

Podłoże pod ustawienie obrzeża może stanowić rodzimy grunt piaszczysty lub podsypka z piasku, o grubości warstwy od 3 do 5 cm po zagęszczeniu. Podsypkę (ławę) wykonuje się przez zasypanie koryta piaskiem i zagęszczenie z polewaniem woda.

5.4. Ustawienie betonowych obrzeży chodnikowych

Betonowe obrzeża chodnikowe należy ustawiać na wykonanym podłożu w miejscu i ze światłem (odległościa górnej powierzchni obrzeża od ciagu komunikacyjnego) zgodnym z ustaleniami dokumentacji projektowej.

Zewnętrzna ściana obrzeża powinna być obsypana piaskiem starannie ubitym.
Spoiny nie powinny przekraczać szerokości 1 cm . Należy wypełnić je piaskiem. Spoiny przed zalaniem należy oczyścić i zmyć wodą. Spoiny musza być wypełnione całkowicie na pełna głębokość.

6. KONTROLA JAKOŚCI ROBÓT

6.1. Ogólne zasady kontroli jakości robót

Ogólne zasady kontroli jakości robót podano w SST D-M-00.00.00 „Wymagania ogólne" pkt 6.

6.2. Badania przed przystapieniem do robót

Przed przystapieniem do robót Wykonawca powinien wykonać badania materiałów przeznaczonych do ustawienia betonowych obrzeży chodnikowych i przedstawić wyniki tych badań Inżynierowi do akceptacji.

Sprawdzenie wygladu zewnętrznego należy przeprowadzić na podstawie oględzin elementu przez pomiar i policzenie uszkodzeń występujących na powierzchniach i krawędziach elementu, zgodnie z wymaganiami tablicy 3 . Pomiary długości i gł̨̨bokości uszkodzeń należy wykonać za pomoca przymiaru stalowego lub suwmiarki z dokładnością do 1 mm , zgodnie z ustaleniami PN-B10021 [4].

Sprawdzenie kształtu i wymiarów elementów należy przeprowadzić z dokładnościa do 1 mm przy użyciu suwmiarki oraz przymiaru stalowego lub taśmy, zgodnie z wymaganiami tablicy 1 i 2. Sprawdzenie kątów prostych w narożach elementów wykonuje się przez przyłożenie kątownika do badanego naroża i zmierzenia odchyłek z dokładnościa do 1 mm .

Badania pozostałych materiałów powinny obejmować wszystkie właściwości określone w normach podanych dla odpowiednich materiałów wymienionych w pkt 2.

6.3. Badania w czasie robót

W czasie robót należy sprawdzać wykonanie:
a) koryta pod podsypkę - zgodnie z wymaganiami pkt 5.2,
b) podłoża podsypki z piasku - zgodnie z wymaganiami pkt 5.3,
c) ustawienia betonowego obrzeża chodnikowego-zgodnie z wymaganiami pkt 5.4, przy dopuszczalnych odchyleniach:

- linii obrzeża w planie, które może wynosić $\pm 2 \mathrm{~cm}$ na każde 100 m długości obrzeża,
- niwelety górnej płaszczyzny obrzeża , które może wynosić $\pm 1 \mathrm{~cm}$ na każde 100 m długości obrzeża,
- wypełnienia spoin, sprawdzane co 10 metrów, które powinno wykazywać całkowite wypełnienie badanej spoiny na pełna głębokość.

7. OBMIAR ROBÓT

7.1. Ogólne zasady obmiaru robót

Ogólne zasady obmiaru robót podano w SST D-00.00.00 „Wymagania ogólne" pkt 7.

7.2. Jednostka obmiarowa

Jednostka obmiarowa jest m (metr) ustawionego betonowego obrzeża chodnikowego.

8. ODBIÓR ROBÓT

8.1. Ogólne zasady odbioru robót

Ogólne zasady odbioru robót podano w SST D-00.00.00 „Wymagania ogólne" pkt 8.
Roboty uznaje się za wykonane zgodnie z dokumentacją projektowa, SST i wymaganiami Inżyniera, jeżeli wszystkie pomiary i badania z zachowaniem tolerancji wg pkt 6 dały wyniki pozytywne.

8.2. Odbiór robót zanikajacych i ulegajacych zakryciu

Odbiorowi robót zanikajacych i ulegajacych zakryciu podlegaja:

- wykonane koryto,
- wykonana podsypka.

9. PODSTAWA PŁATNOŚCI

9.1. Ogólne ustalenia dotyczące podstawy płatności

Ogólne ustalenia dotyczące podstawy płatności podano w SST D-00.00.00 „Wymagania ogólne" pkt 9 .

9.2. Cena jednostki obmiarowej

Cena wykonania 1 m betonowego obrzeża chodnikowego obejmuje:

- prace pomiarowe i roboty przygotowawcze,
- dostarczenie materiałów,
- wykonanie koryta,
- rozścielenie i ubicie podsypki,
- ustawienie obrzeża,
- wypełnienie spoin,
- obsypanie zewnętrznej ściany obrzeża,
- wykonanie badań i pomiarów wymaganych w specyfikacji technicznej.

10. PRZEPISY ZWIAZANE

Normy

1. PN-B-06050 Roboty ziemne budowlane
2. PN-B-06250 Beton zwykły
3. PN-B-06711 Kruszywo mineralne. Piasek do betonów i zapraw
4. PN-B-10021 Prefabrykaty budowlane z betonu. Metody pomiaru cech geometrycznych
5. PN-B-11111 Kruszywo mineralne. Kruszywa naturalne do nawierzchni drogowych. Żwir i mieszanka
6. PN-B-11113 Kruszywo mineralne. Kruszywa naturalne do nawierzchni drogowych. Piasek
7. PN-B-19701 Cement. Cement powszechnego użytku. Skład, wymagania i ocena zgodności
8. BN-80/6775- Prefabrykaty budowlane z betonu. Elementy 03/01 nawierzchni dróg, ulic, parkingów i torowisk tramwajowych. Wspólne wymagania i badania
9. BN-80/6775- Prefabrykaty budowlane z betonu. Elementy 03/04 nawierzchni dróg, ulic, parkingów i torowisk tramwajowych. Krawężniki i obrzeża.

D-08.05.03
ŚCIEKI Z KOSTKI KAMIENNEJ

1. WSTĘP

1.1. Przedmiot SST

Przedmiotem niniejszej szczegółowej specyfikacji technicznej (SST) sa wymagania dotyczące wykonania i odbioru robót związanych z wykonaniem ścieków z kostki kamiennej w trakcie robót związanych z przebudowa „Płyty Rynku" w Obrzycku.

1.2. Zakres stosowania SST

Szczegółowa specyfikacja techniczna jest stosowana jako dokument przetargowy i kontraktowy przy zlecaniu realizacji robót wymienionych w pkt. 1.1.

1.3. Zakres robót objętych SST

Ustalenia zawarte w niniejszej specyfikacji dotyczą zasad prowadzenia robót związanych z wykonaniem:

- Ścieków ulicznych przykrawężnikowych z kostki kamiennej granitowej wys. 10 cm ,

1.4. Określenia podstawowe

1.4.1. Ściek przykrawężnikowy - element konstrukcji jezdni służący do odprowadzenia wód opadowych z nawierzchni jezdni i chodników do projektowanych odbiorników (np. kanalizacji deszczowej).
1.4.2. Ściek międzyjezdniowy - element konstrukcji jezdni służący do odprowadzenia wód opadowych z nawierzchni, na których zastosowano przeciwne spadki poprzeczne, np. w rejonie zatok, placów itp.
1.4.3. Pozostałe określenia podstawowe sa zgodne z obowiązującymi, odpowiednimi polskimi normami i z definicjami podanymi w SST D-00.00.00 „Wymagania ogólne" pkt 1.4.

1.5. Ogólne wymagania dotyczące robót

Ogólne wymagania dotyczące robót podano w SST D-00.00.00 „Wymagania ogólne" pkt 1.5.

2. MATERIAŁY

2.1. Ogólne wymagania dotyczące materiałów

Ogólne wymagania dotyczące materiałów, ich pozyskiwania i składowania, podano w SST D00.00.00 „Wymagania ogólne" pkt 2.

2.2. Kostka kamienna

Kostka kamienna rzędowa, stosowana do wykonania ścieków powinna odpowiadać wymaganiom PN-B-11100 [1]. Powinna to być kostka klasy I, gatunku 1. Kształt, wymiary i dopuszczalne odchytki wymiarowe dla kostki nieregularnej i rzędowej podano w SST D-05.03.01 „Nawierzchnia z kostki kamiennej".

Wymagane cechy fizyczne i wytrzymałościowe dla kostki kamiennej klasy I, są następujace:

- wytrzymałość na ściskanie w stanie powietrzno-suchym, nie mniej niż 160 MPa ,
- ścieralność na tarczy Boehmego, nie więcej niż $0,2 \mathrm{~cm}$,
- wytrzymałość na uderzenie (zwięzłość), liczba uderzeń, nie mniej niż 12,
- nasiąkliwość woda, nie więcej niż 0,5\%.

Kostkę rzędową należy ustawiać w stosach. Wysokość stosu lub pryzm nie powinna przekraczać 1 m .

2.3. Inne materiały

2.31.. Beton na ławe

Beton użyty na ławę pod ściek powinien odpowiadać wymaganiom PN-B-06250 [2]. Jeśli dokumentacja projektowa nie stanowi inaczej, powinien to być beton klasy B-15 .

2.3.2. Kruszywo do betonu

Kruszywo do betonu powinno odpowiadać wymaganiom PN-B-06712 [4].
Kruszywo należy przechowywać w warunkach zabezpieczajacych je przed zanieczyszczeniem, zmieszaniem z kruszywami innych asortymentów, gatunków i marek.

2.3.3. Cement

Cement stosowany do betonu powinien być cementem portlandzkim, odpowiadającym wymaganiom PN-B-19701 [5].

Cement stosowany do zaprawy cementowej i na podsypkę cementowo-piaskową powinien być klasy 32,5 .

Przechowywanie cementu powinno być zgodne z BN-88/6731-08 [7].

2.3.4. Piasek

Piasek na podsypkę cementowo-piaskowa powinien odpowiadać wymaganiom PN-B-06712
Piasek do zaprawy cementowo-piaskowej powinien odpowiadać wymaganiom PN-B-06711
[3].

2.3.5. Woda

Woda powinna być „odmiany 1 " i odpowiadać wymaganiom PN-B-32250 [6].

3. SPRZĘT

3.1. Ogólne wymagania dotyczące sprzętu

Ogólne wymagania dotyczace sprzętu podano w SST D-00.00.00 „Wymagania ogólne" pkt 3.

3.2. Sprzęt do wykonania ścieku

Roboty można wykonywać ręcznie z zastosowaniem następujacego sprzętu:

- betoniarek do wytwarzania betonu i zapraw,
- ubijaków ręcznych i mechanicznych do ubijania kostki.

4. TRANSPORT

4.1. Ogólne wymagania dotyczace transportu

Ogólne wymagania dotyczace transportu podano w OST D-M-00.00.00 „Wymagania ogólne" pkt 4.

4.2. Transport materiałów

Wymagania dotyczące transportu kostki w SST D-05.03.01 „Nawierzchnia z kostki kamiennej".

5. WYKONANIE ROBÓT

5.1. Ogólne zasady wykonania robót

Ogólne zasady wykonania robót podano w SST D-00.00.00 „Wymagania ogólne" pkt 5.

5.2. Roboty przygotowawcze

Przed przystąpieniem do wykonania ścieku należy wytyczyć linię krawężnika i oś ścieku zgodnie z dokumentacja projektowa.

5.3. Wykonanie wykopu, ławy i ustawienie krawężników

Wykonanie wykopu pod ławę, ławy betonowej dla ścieku przykrawężnikowego powinno być zgodne z dokumentacja projektową oraz postanowieniami SST D-08.01.01 „Krawężniki betonowe".

5.4. Wykonanie ścieku z kostki kamiennej

Ogólne wymagania dotyczące układania kostki kamiennej podano w SST
D05.03.01 „Nawierzchnia z kostki kamiennej".

Rodzaj i wymiary ścieku powinny być zgodne z dokumentacją projektową. Jeżeli dokumentacja projektowa nie stanowi inaczej, to najczęściej stosuje się ścieki przykrawężnikowe i międzyjezdniowe z 2 rzędów kostki kamiennej nieregularnej lub rzędowej, obniżonych w stosunku do krawędzi nawierzchni o 1 do 2 cm .

Na ławie betonowej należy wykonać podsypkę cementowo-piaskową o grubości zgodnej z dokumentacja projektowa i wymaganiami podanymi w SST D-05.03.01 „Nawierzchnia z kostki kamiennej".

Na wykonanej podsypce należy ułożyć ściek z kostki rzędowej, z zachowaniem wymaganej w dokumentacji projektowej niwelety ścieku. Szerokość spoin między poszczególnymi kostkami nie powinna przekraczać 12 mm . Ułożoną kostkę należy ubić przy pomocy ubijaków ręcznych lub mechanicznych. Kostki pęknięte należy wymienić na całe.

Wypelnienie spoin należy wykonywać zgodnie z warunkami podanymi w SST
D05.03.01 „Nawierzchnia z kostki kamiennej".

6. KONTROLA JAKOŚCI ROBÓT

6.1. Ogólne zasady kontroli jakości robót

Ogólne zasady kontroli jakości robót podano w SST D-00.00.00 „Wymagania ogólne" pkt 6.

6.2. Badania przed przystapieniem do robót

Przed przystapieniem do robót Wykonawca powinien wykonać badania materiałów przeznaczonych do wykonania ścieku z kostki kamiennej i przedstawić wyniki tych badań Inżynierowi do akceptacji.

Badania kostki powinny być wykonane w zakresie i z częstotliwością wg SST D-05.03.01 „Nawierzchnia z kostki kamiennej".

Badania pozostałych materiałów stosowanych do wykonania ścieku z kostki kamiennej powinny obejmować wszystkie właściwości, które zostały określone w przepisach podanych dla odpowiednich materiałów w pkt 2.

6.3. Badania w czasie robót

W czasie robót należy wykonywać badania i pomiary ścieku z kostki wg zakresu i z częstotliwościa podana w OST D-08.05.02 „Ścieki klinkierowe".

7. OBMIAR ROBÓT

7.1. Ogólne zasady obmiaru robót

Ogólne zasady obmiaru robót podano w OST D-M-00.00.00 „Wymagania ogólne" pkt 7.

7.2. Jednostka obmiarowa

Jednostką obmiarowa jest m (metr) wykonanego ścieku z kostki kamiennej.

8. ODBIÓR ROBÓT

8.1. Ogólne zasady odbioru robót

Ogólne zasady odbioru robót podano w SST D-00.00.00 „Wymagania ogólne" pkt 8.
Roboty uznaje się za wykonane zgodnie z dokumentacja projektowa, SST wymaganiami Inżyniera, jeżeli wszystkie pomiary i badania z zachowaniem tolerancji wg pkt 6 dały wyniki pozytywne.

8.2. Odbiór robót zanikających i ulegajacych zakryciu

Odbiorowi robót zanikajacych i ulegajacych zakryciu podlegaja:

- wykop pod ławe,
- wykonana ława,
- wykonana podsypka.

9. PODSTAWA PŁATNOŚCI

9.1. Ogólne ustalenia dotyczące podstawy płatności

Ogólne ustalenia dotyczące podstawy płatności podano w SST D-00.00.00 „Wymagania ogólne" pkt 9 .

9.2. Cena jednostki obmiarowej

Cena wykonania 1 m ścieku z kostki kamiennej obejmuje:

- prace pomiarowe i przygotowawcze,
- dostarczenie materiałów,
- wykonanie wykopu pod ławe,
- ew. wykonanie szalunku,
- wykonanie ławy,
- pielęgnację betonu i ew. rozbiórkę szalunku,
- wykonanie podsypki, ustawienie krawężników,
- wypełnienie spoin,
- ułożenie ścieku z kostki kamiennej rzędowej, z wypełnieniem spoin i pielęgnacjá ścieku,
- przeprowadzenie pomiarów i badań wymaganych w specyfikacji technicznej.

10. PRZEPISY ZWIAZANE

Norma

PN-B-11100 Materiały kamienne. Kostka drogowa

D - 07.02.01

OZNAKOWANIE PIONOWE

1. WSTECP

1.1. Przedmiot SST

Przedmiotem niniejszej szczegółowej specyfikacji technicznej (SST) są wymagania dotyczace wykonania i odbioru oznakowania pionowego w trakcie robót związanych z przebudową „Płyty Rynku" w Obrzycku.

1.2. Zakres stosowania SST

Szczegółowa specyfikacja techniczna jest stosowana jako dokument przetargowy i kontraktowy przy zlecaniu realizacji robót wymienionych w pkt. 1.1.

1.3. Zakres robót objętych SST

Ustalenia zawarte w niniejszej specyfikacji dotyczą zasad prowadzenia robót związanych z wykonywaniem i odbiorem oznakowania pionowego stosowanego na drogach, w postaci:

- znaków ostrzegawczych odblaskowych $900 \times 900 \times 900 \mathrm{~mm}$,
- znaki informacyjne odblaskowe $600 \times 600 \mathrm{~mm}$,

1.4. Określenia podstawowe

1.4.1. Znak pionowy - znak wykonany w postaci tarczy lub tablicy z napisami albo symbolami, zwykle umieszczony na konstrukcji wsporczej.
1.4.2. Tarcza znaku - element konstrukcyjny, na powierzchni którego umieszczana jest treść znaku. Tarcza może być wykonana z różnych materiałów (stal, aluminium, tworzywa syntetyczne itp.) - jako jednolita lub składana.
1.4.3. Lico znaku - przednia część znaku, służąca do podania treści znaku. Lico znaku może być wykonane jako malowane lub oklejane (folią odblaskową lub nieodblaskowa). W przypadkach szczególnych (znak z przejrzystych tworzyw syntetycznych) lico znaku może być zatopione w tarczy znaku.
1.4.4. Znak drogowy nieodblaskowy - znak, którego lico wykonane jest z materiałów zwykłych (lico nie wykazuje właściwości odblaskowych).
1.4.5. Znak drogowy odblaskowy - znak, którego lico wykazuje właściwości odblaskowe (wykonane jest z materiału o odbiciu powrotnym - współdrożnym).
1.4.6. Konstrukcja wsporcza znaku - słup (słupy), wysięgnik, wspornik itp., na którym zamocowana jest tarcza znaku, wraz z elementami służącymi do przymocowania tarczy (śruby, zaciski itp.).
1.4.7. Znak drogowy prześwietlany - znak, w którym wewnętrzne źródło światła jest umieszczone pod przejrzystym licem znaku.
1.4.8. Znak drogowy oświetlany - znak, którego lico jest oświetlane źródłem światła umieszczonym na zewnątrz znaku.
1.4.9. Znak nowy - znak użytkowany (ustawiony na drodze) lub magazynowany wokresie do 3 miesięcy od daty produkcji.
1.4.10. Znak użytkowany - znak ustawiony na drodze lub magazynowany przez okres dłuższy niż 3 miesiace od daty produkcji.
1.4.11. Pozostałe określenia podstawowe są zgodne z obowiązującymi, odpowiednimi polskimi normami i z definicjami podanymi w OST D-M-00.00.00 „Wymagania ogólne" pkt 1.4.

1.5. Ogólne wymagania dotyczące robót

Ogólne wymagania dotyczące robót podano w SST D-00.00.00 „Wymagania ogólne" pkt 1.5.

2. MATERIAŁY

2.1. Ogólne wymagania dotyczące materiałów

Ogólne wymagania dotyczące materiałów, ich pozyskiwania i składowania podano w SST D00.00.00 „Wymagania ogólne" pkt 2.

2.2. Aprobata techniczna dla materiałów

Każdy materiał do wykonania pionowego znaku drogowego, na który nie ma normy, musi posiadać aprobatę techniczną wydana przez uprawniona jednostkę. Znaki drogowe powinny mieć certyfikat bezpieczeństwa (znak „B") nadany przez uprawniona jednostkę.

2.3. Materiały stosowane do fundamentów znaków

Fundamenty dla zamocowania konstrukcji wsporczych znaków mogą być wykonywane jako:

- prefabrykaty betonowe,
- z betonu wykonywanego „na mokro",
- inne rozwiazania zaakceptowane przez Inżyniera.

Klasa betonu powinna być zgodna z dokumentacją projektowa. Beton powinien odpowiadać wymaganiom PN-B-06250 [1].

2.3.1. Cement

Cement stosowany do betonu powinien być cementem portlandzkim klasy 32,5, odpowiadajacy wymaganiom PN-B-19701 [4].

2.3.2. Kruszywo

Kruszywo stosowane do betonu powinno odpowiadać wymaganiom PN-B-06712 [3]. Zaleca się stosowanie kruszywa o marce nie niższej niż klasa betonu.

2.3.3. Woda

Woda do betonu powinna być „odmiany 1", zgodnie z wymaganiami normy PN-B-32250 [6].

2.4. Konstrukcje wsporcze

2.4.1. Ogólne charakterystyki konstrukcji

Konstrukcje wsporcze znaków pionowych należy wykonać zgodnie z dokumentacja projektowa i SST, a w przypadku braku wystarczających ustaleń, zgodnie z propozycja Wykonawcy zaakceptowana przez Inżyniera.

Konstrukcje wsporcze można wykonać z ocynkowanych zaakceptowanych przez Inżyniera.
Wymiary i najważniejsze charakterystyki elementów konstrukcji wsporczej z rur i kątowników podano w tablicy 1 i 2.

Tablica 1. Rury stalowe okragłe bez szwu walcowane na goraco wg PN-H-74219 [9]

```Średnica zewnętrzn a mm```	Grubość ścianki mm	Masa 1 m kg/m	Dopuszczalne odchyłki	
			średnicy zewnętrzn ej $\qquad$	grubości ścianki
44,5	od 2,6 do 11,0	od 2,69 do 9,09	$\pm 1,25$ \%	$\pm 15 \%$

### 2.4.2. Rury

Rury powinny odpowiadać wymaganiom PN-H-74219 [9], PN-H-74220 [10] lub innej normy zaakceptowanej przez Inżyniera.

Powierzchnia zewnętrzna i wewnętrzna rur nie powinna wykazywać wad w postaci łusek, pęknięć, zwalcowań i naderwań. Dopuszczalne są nieznaczne nierówności, pojedyncze rysy wynikajace z procesu wytwarzania, mieszczące się w granicach dopuszczalnych odchyłek wymiarowych.

Końce rur powinny być obcięte równo i prostopadle do osi rury.
Pożądane jest, aby rury były dostarczane o długościach:

- dokładnych, zgodnych z zamówieniem; z dopuszczalną odchyłka $\pm 10 \mathrm{~mm}$,
- wielokrotnych w stosunku do zamówionych długości dokładnych poniżej 3 m z naddatkiem 5 mm na każde cięcie i z dopuszczalną odchyłką dla całej długości wielokrotnej, jak dla długości dokładnych.

Rury powinny być proste. Dopuszczalna miejscowa krzywizna nie powinna przekraczać 1,5 mm na 1 m długości rury.

Rury powinny być wykonane ze stali w gatunkach dopuszczonych przez normy (np. R 55, R 65, 18G2A): PN-H-84023-07 [15], PN-H-84018 [12], PN-H-84019 [13], PN-H-84030-02 [16] lub inne normy.

Do ocynkowania rur stosuje się gatunek cynku Raf według PN-H-82200 [11].
Rury powinny być dostarczone bez opakowania w wiazzach lub luzem względnie w opakowaniu uzgodnionym z Zamawiajacym. Rury powinny być cechowane indywidualnie (dotyczy średnic $31,8 \mathrm{~mm}$ i większych i grubości ścianek $3,2 \mathrm{~mm}$ i większych) lub na przywieszkach metalowych (dotyczy średnic i grubości mniejszych od wyżej wymienionych). Cechowanie na rurze lub przywieszce powinno co najmniej obejmować: znak wytwórcy, znak stali i numer wytopu.

### 2.4.3. Powłoki metalizacyjne cynkowe

W przypadku zastosowania powłoki metalizacyjnej cynkowej na konstrukcjach stalowych, powinna ona być z cynku o czystości nie mniejszej niż 99,5 \% i odpowiadać wymaganiom BN-89/1076-02 [25]. Minimalna grubość powłoki cynkowej powinna być zgodna z wymaganiami tablicy 4.

Powierzchnia powłoki powinna być jednorodna pod względem ziarnistości. Nie może ona wykazywać widocznych wad jak rysy, pęknięcia, pęcherze lub odstawanie powłoki od podłoża.

Tablica 4. Minimalna grubość powłoki metalizacyjnej cynkowej narażonej na działanie korozji atmosferycznej według BN-89/1076-02 [25]

Agresywność korozyjna   atmosfery   według PN-H-04651 [8]	Minimalna grubość powłoki, $\mu \mathrm{m}$,   przy wymaganej trwałości w latach	
Umiarkowana	10	20

### 2.4.6. Gwarancja producenta lub dostawcy na konstrukcję wsporczą

Producent lub dostawca każdej konstrukcji wsporczej, a w przypadku znaków umieszczanych na innych obiektach lub konstrukcjach (wiadukty nad droga, kładki dla pieszych, słupy latarń itp.), także elementów służących do zamocowania znaków na tym obiekcie lub konstrukcji, obowiazany jest do wydania gwarancji na okres trwałości znaku uzgodniony z odbiorca. Przedmiotem gwarancji są właściwości techniczne konstrukcji wsporczej lub elementów mocujących oraz trwałość zabezpieczenia przeciwkorozyjnego.

W przypadku słupków znaków pionowych ostrzegawczych, zakazu, nakazu i informacyjnych o standardowych wymiarach oraz w przypadku elementów, służacych do zamocowania znaków do innych obiektów lub konstrukcji - gwarancja może być wydana dla partii dostawy. W przypadku konstrukcji wsporczej dla znaków drogowych bramowych i wysięgnikowych gwarancja jest wystawiana indywidualnie dla każdej konstrukcji wsporczej.

### 2.5. Tarcza znaku

### 2.5.1. Trwałość materiałów na wpływy zewnętrzne

Materiały użyte na lico i tarczę znaku oraz połączenie lica znaku z tarczą znaku, a także sposób wykończenia znaku, muszą wykazywać pełna odporność na oddziaływanie światła, zmian temperatury, wpływy atmosferyczne i występujace w normalnych warunkach oddziaływania chemiczne (w tym korozję elektrochemiczna) - przez cały czas trwałości znaku, określony przez wytwórcę lub dostawcę.
2.5.2. Warunki gwarancyjne producenta lub dostawcy znaku

Producent lub dostawca znaku obowiązany jest przy dostawie określić, uzgodnioną z odbiorca, trwałość znaku oraz warunki gwarancyjne dla znaku, a także udostępnić na życzenie odbiorcy:
a) instrukcję montażu znaku,
b) dane szczegółowe o ewentualnych ograniczeniach w stosowaniu znaku,
c) instrukcję utrzymania znaku.

### 2.5.3. Materiały do wykonania tarczy znaku

Materiałami stosowanymi do wykonania tarczy znaku drogowego sa:

- blacha stalowa,


### 2.5.4. Tarcza znaku z blachy stalowej

Tarcza znaku z blachy stalowej grubości co najmniej $1,0 \mathrm{~mm}$ powinna być zabezpieczona przed korozja obustronnie cynkowaniem ogniowym lub elektrolitycznym.

Krawędzie tarczy powinny być zabezpieczone przed korozja farbami ochronnymi o odpowiedniej trwałości, nie mniejszej niż przewidywany okres użytkowania znaku.

Wytrzymałość dla tarczy znaku z blachy stalowej nie powinna być mniejsza niż 310 MPa .

### 2.5.5. Warunki wykonania tarczy znaku

Tarcza znaku musi być równa i gładka - bez odkształceń płaszczyzny znaku, w tym pofałdowań, wgięć, lokalnych wgnieceń lub nierówności itp. Odchylenie płaszczyzny tarczy znaku (zwichrowanie, pofałdowanie itp.) nie może wynosić więcej niż $1,5 \%$ największego wymiaru znaku.

Krawędzie tarczy znaku muszą być równe i nieostre. Zniekształcenia krawędzi tarczy znaku, pozostałe po tłoczeniu lub innych procesach technologicznych, którym tarcza ta (w znakach drogowych składanych - segmenty tarczy) była poddana, muszą być usunięte.

### 2.6. Znaki odblaskowe

### 2.6.1. Wymagania dotyczące powierzchni odblaskowej

Znaki drogowe odblaskowe wykonuje się z zasady przez oklejenie tarczy znaku materiałem odblaskowym.

Właściwości folii odblaskowej (odbijającej powrotnie) powinny spełniać wymagania określone w aprobacie technicznej.

### 2.6.2. Wymagania jakościowe znaku odblaskowego

Folie odblaskowe użyte do wykonania lica znaku powinny wykazywać pełne związanie z tarcza znaku przez cały okres wymaganej trwałości znaku. Niedopuszczalne sa lokalne niedoklejenia, odklejania, złuszczenia lub odstawanie folii na krawędziach tarczy znaku oraz na jego powierzchni.

Sposób połączenia folii z powierzchnią tarczy znaku powinien uniemożliwiać jej odłączenie od tarczy bez jej zniszczenia.

Przy malowaniu lub klejeniu symboli lub obrzeży znaków na folii odblaskowej, technologia malowania lub klejenia oraz stosowane w tym celu materiały powinny być uzgodnione z producentem folii.

Okres trwałości znaku wykonanego przy użyciu folii odblaskowych powinien wynosić od 7 do 10 lat, w zależności od rodzaju materiału.

Powierzchnia lica znaku powinna być równa i gładka, nie moga na niej występować lokalne nierówności i pofałdowania. Niedopuszczalne jest występowanie jakichkolwiek ognisk korozji, zarówno na powierzchni jak i na obrzeżach tarczy znaku.

Dokładność rysunku znaku powinna być taka, aby wady konturów znaku, które moga powstać przy nanoszeniu farby na odblaskową powierzchnię znaku, nie były większe niż:

- 2 mm dla znaków małych i średnich,
- 3 mm dla znaków dużych i wielkich.

Powstałe zacieki przy nanoszeniu farby na odblaskową część znaku nie powinny być większe w każdym kierunku niż:

- 2 mm dla znaków małych i średnich,
- 3 mm dla znaków dużych i wielkich.

W znakach nowych na każdym z fragmentów powierzchni znaku o wymiarach $4 \times 4$ cm nie może występować więcej niż 0,7 lokalnych usterek (załamania, pęcherzyki) o wymiarach nie większych niż 1 mm w każdym kierunku. Niedopuszczalne jest występowanie jakichkolwiek zarysowań powierzchni znaku.

W znakach użytkowanych na każdym z fragmentów powierzchni znaku o wymiarach $4 \times 4 \mathrm{~cm}$ dopuszcza się do 2 usterek jak wyżej, o wymiarach nie większych niż 1 mm w każdym kierunku. Na powierzchni tej dopuszcza się do 3 zarysowań o szerokości nie większej niż $0,8 \mathrm{~mm}$ i całkowitej długości nie większej niż 10 cm . Na całkowitej długości znaku dopuszcza się nie więcej niż 5 rys szerokości nie większej niż $0,8 \mathrm{~mm}$ i długości przekraczającej 10 cm - pod warunkiem, że zarysowania te nie zniekształcają treści znaku.

W znakach użytkowanych dopuszcza się również lokalne uszkodzenie folii o powierzchni nie przekraczającej $6 \mathrm{~mm}^{2}$ każde - w liczbie nie większej niż pięć na powierzchni znaku małego lub średniego, oraz o powierzchni nie przekraczającej $8 \mathrm{~mm}^{2}$ każde - w liczbie nie większej niż 8 na każdym z fragmentów powierzchni znaku dużego lub wielkiego (włączając znaki informacyjne) o wymiarach $1200 \times 1200 \mathrm{~mm}$.

Uszkodzenia folii nie mogą zniekształcać treści znaku - w przypadku występowania takiego zniekształcenia znak musi być bezzwłocznie wymieniony.

W znakach nowych niedopuszczalne jest występowanie jakichkolwiek rys, sięgajacych przez warstwę folii do powierzchni tarczy znaku. W znakach użytkowanych istnienie takich rys jest dopuszczalne pod warunkiem, że występujące w ich otoczeniu ogniska korozyjne nie przekrocza wielkości określonych poniżej.

W znakach użytkowanych dopuszczalne jest występowanie po wymaganym okresie gwarancyjnym, co najwyżej dwóch lokalnych ognisk korozji o wymiarach nie przekraczajacych 2,0 $\mathrm{mm} w$ każdym kierunku na powierzchni każdego z fragmentów znaku o wymiarach $4 \times 4 \mathrm{~cm}$. W znakach nowych oraz w znakach znajdujacych się w okresie wymaganej gwarancji żadna korozja tarczy znaku nie może występować.

Wymagana jest taka wytrzymałość połączenia folii odblaskowej z tarcza znaku, by po zgięciu tarczy o $90^{\circ}$ przy promieniu łuku zgięcia do 10 mm w żadnym miejscu nie uległo ono zniszczeniu.

Tylna strona tarczy znaków odblaskowych musi być zabezpieczona matową farba nieodblaskową barwy ciemno-szarej (szarej naturalnej) o współczynniku luminancji 0,08 do 0,10według wzorca stanowiącego załącznik do „Instrukcji o znakach drogowych pionowych" [28]. Grubość powłoki farby nie może być mniejsza od $20 \mu \mathrm{~m}$. Gdy tarcza znaku jest wykonana z aluminium lub ze stali cynkowanej ogniowo i cynkowanie to jest wykonywane po ukształtowaniu tarczy - jej krawędzie moga pozostać niezabezpieczone farba ochronna.

### 2.11. Materiały do montażu znaków

Wszystkie ocynkowane łączniki metalowe przewidywane do mocowania między soba elementów konstrukcji wsporczych znaków jak śruby, listwy, wkręty, nakrętki itp. powinny być czyste, gładkie, bez pęknięć, naderwań, rozwarstwień i wypukłych karbów.

Łączniki mogą być dostarczane w pudełkach tekturowych, pojemnikach blaszanych lub paletach, w zależności od ich wielkości.

### 2.12. Przechowywanie i składowanie materiałów

Cement stosowany do wykonania fundamentów dla pionowych znaków drogowych powinien być przechowywany zgodnie z BN-88/6731-08 [27].

Kruszywo do betonu należy przechowywać w warunkach zabezpieczających je przed zanieczyszczeniem oraz zmieszaniem z kruszywami innych klas.

Prefabrykaty betonowe powinny być składowane na wyrównanym, utwardzonym i odwodnionym podłożu. Prefabrykaty należy układać na podkładach z zachowaniem prześwitu minimum 10 cm między podłożem a prefabrykatem.

Znaki powinny być przechowywane w pomieszczeniach suchych, z dala od materiałów działajacych korodujaco i w warunkach zabezpieczajacych przed uszkodzeniami.

## 3. SPRZĘT

### 3.1. Ogólne wymagania dotyczące sprzętu

Ogólne wymagania dotyczące sprzętu podano w SST D-00.00.00 „Wymagania ogólne" pkt 3.

### 3.2. Sprzęt do wykonania oznakowania pionowego

Wykonawca przystępujący do wykonania oznakowania pionowego powinien wykazać się możliwością korzystania z następującego sprzętu:

- betoniarek przewoźnych do wykonywania fundamentów betonowych „na mokro",
- środków transportowych do przewozu materiałów,
- przewoźnych zbiorników na wodę,
- sprzętu spawalniczego, itp.


## 4. TRANSPORT

### 4.1. Ogólne wymagania dotyczące transportu

Ogólne wymagania dotyczące transportu podano w SST D-00.00.00 „Wymagania ogólne" pkt 4.

### 4.2. Transport materiałów do pionowego oznakowania dróg

Transport cementu powinien odbywać się zgodnie z BN-88/6731-08 [27].
Transport kruszywa powinien odbywać się zgodnie z PN-B-06712 [3].
Prefabrykaty betonowe - do zamocowania konstrukcji wsporczych znaków, powinny być przewożone środkami transportowymi w warunkach zabezpieczajacych je przed uszkodzeniami. Rozmieszczenie prefabrykatów na środkach transportu powinno być symetryczne.

Transport znaków, konstrukcji wsporczych i sprzętu (uchwyty, śruby, nakrętki itp.) powinien się odbywać środkami transportowymi w sposób uniemożliwiajacy ich przesuwanie się w czasie transportu i uszkadzanie.

## 5. WYKONANIE ROBÓT

### 5.1. Ogólne zasady wykonywania robót

Ogólne zasady wykonywania robót podano w SST D-00.00.00 „Wymagania ogólne" pkt 5.

### 5.2. Roboty przygotowawcze

Przed przystapieniem do robót należy wyznaczyć:

- lokalizację znaku, tj. jego pikietaż oraz odległość od krawędzi jezdni, krawędzi pobocza umocnionego lub pasa awaryjnego postoju,
- wysokość zamocowania znaku na konstrukcji wsporczej.

Punkty stabilizujace miejsca ustawienia znaków należy zabezpieczyć w taki sposób, aby w czasie trwania i odbioru robót istniała możliwość sprawdzenia lokalizacji znaków.

Lokalizacja i wysokość zamocowania znaku powinny być zgodne z dokumentacją projektową.

### 5.3. Wykonanie wykopów i fundamentów dla konstrukcji wsporczych znaków

Sposób wykonania wykopu pod fundament znaku pionowego powinien być dostosowany do głębokości wykopu, rodzaju gruntu i posiadanego sprzętu. Wymiary wykopu powinny być zgodne z dokumentacją projektową lub wskazaniami Inżyniera.

Wykopy fundamentowe powinny być wykonane w takim okresie, aby po ich zakończeniu można było przystąpić natychmiast do wykonania w nich robót fundamentowych.

### 5.3.1. Fundamenty $z$ betonu i betonu zbrojonego

Wykopy pod fundamenty konstrukcji wsporczych dla zamocowania znaków wielkowymiarowych (znak kierunku i miejscowości), wykonywane z betonu „na mokro" należy wykonać zgodnie z PN-S-02205 [24].

### 5.4. Tolerancje ustawienia znaku pionowego

Konstrukcje wsporcze znaków - słupki, słupy, wysięgniki, konstrukcje dla tablic wielkowymiarowych, powinny być wykonane zgodnie z dokumentacją pionową i SST.

Dopuszczalne tolerancje ustawienia znaku:

- odchyłka od pionu, nie więcej niż $\pm 1$ \%,
- odchyłka w wysokości umieszczenia znaku, nie więcej niż $\pm 2$ cm,
- odchyłka w odległości ustawienia znaku od krawędzi jezdni utwardzonego pobocza lub pasa awaryjnego postoju, nie więcej niż $\pm 5 \mathrm{~cm}$, przy zachowaniu minimalnej odległości umieszczenia znaku zgodnie z Instrukcja o znakach drogowych pionowych [28].

Konstrukcje wsporcze znaków drogowych pionowych muszą mieć barwę szarą neutralną z

### 5.5. Trwałość wykonania znaku pionowego

Znak drogowy pionowy musi być wykonany w sposób trwały, zapewniajacy pełna czytelność przedstawionego na nim symbolu lub napisu w całym okresie jego użytkowania, przy czym wpływy zewnętrzne działające na znak, nie mogą powodować zniekształcenia treści znaku.

### 5.6. Tabliczka znamionowa znaku

Każdy wykonany znak drogowy oraz każda konstrukcja wsporcza musi mieć tabliczkę znamionową z:
a) nazwą, marką fabryczną lub innym oznaczeniem umożliwiajacym identyfikację wytwórcy lub dostawcy,
b) data produkcji,
c) oznaczeniem dotyczącym materiału lica znaku,
d) data ustawienia znaku.

Zaleca się, aby tabliczka znamionowa konstrukcji wsporczych zawierała również miesiąc i rok wymaganego przegladu technicznego.

Napisy na tabliczce znamionowej muszą być wykonane w sposób trwały i wyraźny, czytelny w normalnych warunkach przez cały okres użytkowania znaku.
6. KONTROLA JAKOŚCI ROBÓT

### 6.1. Ogólne zasady kontroli jakości robót

Ogólne zasady kontroli jakości robót podano w SST D-00.00.00 „Wymagania ogólne" pkt 6.

### 6.2. Badania materiałów do wykonania fundamentów betonowych

Wykonawca powinien przeprowadzić badania materiałów do wykonania fundamentów betonowych „na mokro". Uwzględniajac nieskomplikowany charakter robót fundamentowych, na wniosek Wykonawcy, Inżynier może zwolnić go z potrzeby wykonania badań materiałów dla tych robót.

### 6.3. Badania w czasie wykonywania robót

6.3.1. Badania materiałów w czasie wykonywania robót

Wszystkie materiały dostarczone na budowę z aprobatą techniczną lub z deklaracją zgodności wydana przez producenta powinny być sprawdzone w zakresie powierzchni wyrobu i jego wymiarów. Częstotliwość badań i ocena ich wyników powinna być zgodna z ustaleniami tablicy 6.

Tablica 6. Częstotliwość badań przy sprawdzeniu powierzchni i wymiarów wyrobów dostarczonych przez producentów

Lp.	Rodzaj badania	Liczba badań	Opis badań	Ocena wyników badań
1	Sprawdzenie powierzchni	od 5 do 10 badań z   wybra- nych losowo elementów w każdej dostarczonej partii wyrobów licza-cej do 1000 elementów	Powierzchnię zbadać nieuzbrojonym okiem. Do ew. sprawdzenia głębokości wad użyć dostępnych narzędzi (np. liniałów z czujnikiem, suwmiarek, mikrometrów itp.	Wyniki badań powinny być zgodne z wymagania mi punktu 2
2	Sprawdzenie wymiarów		Przeprowadzić uniwersalnymi przyrządami pomiarowymi lub sprawdzianami (np. liniałami, przymiarami itp.)	

W przypadkach budzących wąpliwości można zlecić uprawnionej jednostce zbadanie właściwości dostarczonych wyrobów i materiałów w zakresie wymagań podanych w punkcie 2.

### 6.3.2 Kontrola w czasie wykonywania robót

W czasie wykonywania robót należy sprawdzać:

- zgodność wykonania znaków pionowych z dokumentacja projektowa (lokalizacja, wymiary, wysokość zamocowania znaków),
- zachowanie dopuszczalnych odchyłek wymiarów, zgodnie z punktem 2 i 5 ,
- prawidłowość wykonania wykopów pod konstrukcje wsporcze, zgodnie z punktem 5.3,
- poprawność wykonania fundamentów pod słupki zgodnie z punktem 5.3,
- poprawność ustawienia słupków i konstrukcji wsporczych, zgodnie z punktem 5.4.

W przypadku wykonania spawanych złącz elementów konstrukcji wsporczych:

- przed oględzinami, spoinę i przylegające do niej elementy łączone (od 10 do 20 mm z każdej strony) należy dokładnie oczyścić z zanieczyszczeń utrudniających prowadzenie obserwacji i pomiarów,
- oględziny złączy należy przeprowadzić wizualnie z ewentualnym użyciem lupy o powiększeniu od 2 do 4 razy; do pomiarów spoin powinny być stosowane wzorniki, przymiary oraz uniwersalne spoinomierze,
- w przypadkach watpliwych można zlecić uprawnionej jednostce zbadanie wytrzymałości zmęczeniowej spoin, zgodnie z PN-M-06515 [18],

Przebudowa „Płyty Rynku" w Obrzycku

- złącza o wadach większych niż dopuszczalne, określone w punkcie 5.5, powinny być naprawione powtórnym spawaniem.


## 7. OBMIAR ROBÓT

### 7.1. Ogólne zasady obmiaru robót

Ogólne zasady obmiaru robót podano w SST D-00.00.00 „Wymagania ogólne" pkt 7.

### 7.2. Jednostka obmiarowa

Jednostkami obmiarowymi sa:
a) szt. (sztuka), dla znaków konwencjonalnych oraz konstrukcji wsporczych,
8. ODBIÓR ROBÓT

### 8.1. Ogólne zasady odbioru robót

Ogólne zasady odbioru robót podano w SST D-00.00.00 „Wymagania ogólne" pkt 8.
Roboty uznaje się za wykonane zgodnie z dokumentacja projektowa, SST i wymaganiami Inżyniera, jeżeli wszystkie pomiary i badania z zachowaniem tolerancji wg pkt 6, dały wyniki pozytywne.

### 8.2. Odbiór ostateczny

Odbiór robót oznakowania pionowego dokonywany jest na zasadzie odbioru ostatecznego. Odbiór ostateczny powinien być dokonany po całkowitym zakończeniu robót, na podstawie wyników pomiarów i badań jakościowych określonych w punktach 2 i 5 .

### 8.3. Odbiór pogwarancyjny

Odbioru pogwarancyjnego należy dokonać po upływie okresu gwarancyjnego, ustalonego w SST.

## 9. PODSTAWA PŁATNOŚCI

### 9.1. Ogólne ustalenia dotyczące podstawy płatności

Ogólne ustalenia dotyczące podstawy płatności podano w SST D-00.00.00 „Wymagania ogólne" pkt 9 .

### 9.2. Cena jednostki obmiarowej

Cena wykonania jednostki obmiarowej oznakowania pionowego obejmuje:

- prace pomiarowe i roboty przygotowawcze,
- wykonanie fundamentów
- dostarczenie i ustawienie konstrukcji wsporczych,
- zamocowanie tarcz znaków drogowych,
- przeprowadzenie pomiarów i badań wymaganych w specyfikacji technicznej.


## 10. PRZEPISY ZWIAZANE

### 10.1. Normy

1. PN-B-06250 Beton zwykły
2. PN-B-06251 Roboty betonowe i żelbetowe. Wymagania techniczne
3. PN-B-06712 Kruszywa mineralne do betonu zwykłego
4. PN-B-19701 Cement. Cement powszechnego użytku. Skład, wymagania i ocena zgodności
5. PN-B-23010 Domieszki do betonu. Klasyfikacja i określenia
6. PN-B-32250 Materiały budowlane. Woda do betonów i zapraw
7. PN-E-06314 Elektryczne oprawy oświetlenia zewnętrznego
8. PN-H-04651 Ochrona przed korozja. Klasyfikacja i określenie agresywności korozyjnej środowiska
9. PN-H-74219 Rury stalowe bez szwu walcowane na goraco ogólnego zastosowania
10. PN-H-74220 Rury stalowe bez szwu ciagnione i walcowane na zimno ogólnego przeznaczenia
11. PN-H-82200 Cynk
12. PN-H-84018 Stal niskostopowa o podwyższonej wytrzymałości. Gatunki
13. PN-H-84019 Stal niestopowa do utwardzania powierzchniowego i ulepszania cieplnego. Gatunki
14. PN-H-84020 Stal niestopowa konstrukcyjna ogólnego przeznaczenia. Gatunki
15. PN-H-84023- Stal określonego zastosowania. Stal na rury. Gatunki 07
16. PN-H-84030- Stal stopowa konstrukcyjna. Stal do nawęglania. 02 Gatunki
17. PN-H-93010 Stal. Kształtowniki walcowane na goraco
18. PN-H-93401 Stal walcowana. Katowniki równoramienne
19. PN-M-06515 Dźwignice. Ogólne zasady projektowania stalowych ustrojów nośnych
20. PN-M-69011 Spawalnictwo. Złącza spawane w konstrukcjach spawanych. Podział i wymagania
21. PN-M-69420 Spawalnictwo. Druty lite do spawania i napawania stali
22. PN-M-69430 Spawalnictwo. Elektrody stalowe otulone do spawania i napawania. Ogólne wymagania i badania
23. PN-M-69775 Spawalnictwo. Wadliwość złączy spawanych. Oznaczanie klasy wadliwości na podstawie oględzin zewnętrznych
24. PN-S-02205 Drogi samochodowe. Roboty ziemne. Wymagania i badania
25. BN-89/1076- Ochrona przed korozja. Powłoki metalizacyjne 02 cynkowe i aluminiowe na konstrukcjach stalowych i żeliwnych. Wymagania i badania
26. BN-82/4131- Spawalnictwo. Pręty i elektrody ze stopów 03 stellitowych i pręty z żeliw wysokochromowych do napawania
27. BN-88/6731- Cement. Transport i przechowywanie. 08

### 10.2. Inne dokumenty

28. Rozporządzenie Ministra Infrastruktury z dnia 3 lipca 2003r. ( Dz.U. Nr 220 z dnia 23 grudnia 2003r.) w sprawie szczegółowych warunków technicznych dla znaków i sygnałów drogowych oraz urządzeń bezpieczeństwa ruchu drogowego i warunków ich umieszczania na drogach / załącznik nr 1 i 4 /.
