Strona Tytułowa i Spis Zawartości.

Nazwa opracowania:
 Nazwa obiektu :

PROJEKT BUDOWLANY

PRZEBUDOWA, ROZBUDOWA I NADBUDOWA BUDYNKU - DOMU KULTURY.

Lokalizacja:

Kategoria obiektu budowlanego.
Obręb ewidencyjny:
Numery działek:

Inwestor:

Adres inwestora:

Nowosielce.

IX.

Nowosielce. [Nr. 0004]
1000, 1001, 1688.
Gmina Zarszyn.
ul. Bieszczadzka 74.
STAPROTA คAMnCKI
38-530 Zarszyn

Rodzaj opracowania:

Projekt architektoniczno - budowlany.

\qquad
Spis zawartości projektu budowlanego.
I. Projekt zagospodarowania dzialki.

1. Opis techniczny projektu zagospodarowania terenu.
2. Orientacja w skali 1: 10000
3. Projekt zagospodarowania terenu w skali 1:500
II. Opinie i decyzje.
II.1. Decyzja o warunkach zabudowy Wójta Gminy Zarszyn II.2. Mapa ewidencyjna gruntu.
II.3. Wypisy z rejestru gruntów. II.4. Warunki przebudowy gazociagu.
II.5. Warunki przebudowy kanalizacji.
do decyzji wydanej
dnia $28-06-2017$
$\mathrm{Nr} \frac{308 / 17}{}$

Informacja o obszarze oddzialywania obiektu.
IV. Opinia geotechniczna gruntu. Ekspertyza techniczna budynku
V. Charakterystyka energetyczna budynku.
VI. Informacja BIOZ
VII. Óswiadczenie projektantów o sporządzeniu projektu.
VIII. Uprawnienia budowlane projektantów i przynależnoş do izb branżowych.
IX. Projekt budowlany przebudowy, rozbudowy i nadbudowy budynku - Dom Kultury.

Branża
Projektant

Architektura mgr inż. arch. Maciej Wanke. POKK- 7131/10/2006

Konstrukcja mgr inż. Jerzy Gladysz GP-I-UA-7342/14/91

Elektryczna
 UAN - 2 - $8 / 46$-17/88

Sanitarna mgr inż. Tomasz Orlowski
CO PDK OIIB/KK/0054/19/15

Sanitarna Mieczyslaw Fil
Wod. - kan. A -649-132 /82

mgr inż. arch. Edyta Gielarowska Wanke. POKK-7131/1/03

inż. Tadeusz Koprowski UAN-2-8346-13/87

mgr inż. Grzegorz Kosturski PDK 0IIB/KK/0054/0074/14

Mieczyslaw Fil
A-649-132/82

mgr inż. Tomasz Orlowski
PDK OIIB/KK/0054/19/15

IPIS TECHNICZNY

do projektu budowlanego zabudowy izagospodarowania terenu.

Inwestar: Gmina Zarszyn

ul, Bieszczadzka 74

38-530 Zarszyn

Lokalizacja - Dbręb; [0 [04] Nowosielce.
Dziakki nr. ITOD, ICDI, 1688.
Nazwa obiektu: Przebudowa, rozbudowa i nadbudowa budynku Domu Kultury.

1.Podstawa opracowania

- Umowa z Inwestorem
- podklad sytuacyjno - wysokościowy 1:500
- Ekspertyza techniczna stanu budynku
- Inwentaryzacja architektoniczna
- Decyzja a ustaleniu lokalizacji inwestycji
- Dpinia geotechniczna
- Kopia mapy ewidencji gruntów
- wypis z ewidencji gruntów

2.Warunki lokalizaryjne

 istniejącej zabudowy budynkiem użytkowym - Dam Kultury. Konfiguracja działki - teren płaski z minimalnym spadkiem w kierunku pátnocno - wschadnim.
Na dzialce występuje istniejące obiekty i uzbrojenie terenu:

- sieć gazowa.
- przyłącz wodociągowy i hydrant p. pożarawy.
- kanalizacja sanitarna gminna
- linia energetyczna
- budynak użytkowy - Dam Kultury.
-budynek gospodarczy

3. Projektowana zabudowa i zagospodarowanie terenu.

3.1. Zgodnie z decyzją Wójta Gminy Zarszyn z dnia $27-02$ - 2017r, znak; GKP. 6733.1.2017. ML, o ustaleniu lokalizacji inwestycji celu publicznego terenu na dziakkach nr IOID, ICDI, I688, obręb, Nowosielce. prajektowana przebudowa, rozbudowa i nadbudowa budynku Damu Kultury w Nowosielcach. Granica terenu objętego decyzją w konturach A, B, C. D teren inwestycii wskazany na zalączniku graficznym który jest integralną częścią niniejszej decyzji.
3.2. Rodzaj i opis inwestycji.

Uslugi publiczne. Dostosowanie istniejącego budynku do potrzeb inwestora.
Powierzchnia rozbudowy do $200 \mathrm{~m}^{2}$.
Wysokość - do $14,5 \mathrm{~m}$.

4. Dane techniczne obiektu.

4.1.

- Powierzchnia zabudowy	$-744,74 \mathrm{~m}^{2}$	$-943,54 \mathrm{~m}^{2}$
- Powierzchnia użytkowa	$-1132,10 \mathrm{~m}^{2}$	$-2303,50 \mathrm{~m}^{2}$
- Kubatura budynku		$-9370,00 \mathrm{~m}^{3}$
- Wysokość budynku	-9.41 m	$-12,77 \mathrm{~m}$
- Projektowana powierzchnia razbudowy budynku		$-198.80 \mathrm{~m}^{2}$

4.2. Funkcja pomieszczeń objętych przebudową, rozbudową i nadbudową.
4.2.1. parter.

- sala wystaw
- pomieszczenie gospodarcze.
- WC damski.
- WC męski
- W C damski. WC męski- zewnętrzny
- schowek.

4.2.2. I-wsze piętro.

- sala zajęć tanecznych
- aneks socjalny
- WC + łazienka
- natrysk.
- szatnia dla uczestników zajęć tanecznych.

4.2.3. poddasze.

- izba pamięci.
- aneks socjalny
- WC damski i WC męski.
- pomieszczenie gospodarcze.
- sala konferencyjna.
- garderoba zespolu.
- pomieszczenie do ćwiczeń grup obrzędowych.
- pomieszczenie grup obrzędowych.
- pracownia plastyczna.
- pracownia rękodzieła artystycznego.
- biblioteka z czytelnią.
- pomieszczenie socjalne.

5. Uzbrajenie terenu i infrastruktura

5.I. Zaopatrzenie w wode.

Zaopatrzenie budynku po rozbudowie i przebudowie w wode pitną projektowane z istniejącej instalacji wodociągowej w budynku poprzez istniejący przylącz wodociągowy zasilany z gminnej sieci wodociągowej.

5.2. Ddprowadzanie ścieków sanitarnych

Ścieki bytowo - gospodarcze z budynku odprowadzane poprzez istniejący przylącz kanalizacji sanitarnej i po jego przebudowie z podłączeniem do istniejącej gminnej sieci kanalizacji sanitarnej.

5.3. Przyłącz kanalizacji sanitarnej.

Przylącz kanalizacii sanitarnej koliduje z projektowana razbudową budynku Domu Kultury. Przebudowę przylącza kanalizacji sanitarnej projektuje z rur PVC ØIED 4.7 mm . Przylącz kanalizacji sanitarnej uzbrojony w projektowane studzienki kanalizacyjne systemowe z rurą teleskapową PE o średnicy Ø 315 mm . Projekt przebudowy przyłącza kanalizacji sanitarnej opracowany według oddzielnego postepowania.

5.4. Zasilanie elektroenergetyczne.

Zasilanie budynku w energię elektryczną - istniejącą instalacją za licznikową, zgodnie z zawartą umową na dostawę energii elektrycznej.

5.5. Ddprowadzenie wód apadowych

Wody opadowe z polaci dachowej odprowadzane rynnami i rurami spustowymi do gruntu, poprzez projektowane przylącza kanalizacji deszczowej z rur a $200 \times 4.5 \mathrm{~mm} z$ odprowadzeniem do studni chlonnych z kręgów betonowych $\quad 500 \mathrm{~mm}$ z przykryciem betonową plytą na studzienną pelną. Studnie chlonne zlokalizowane na terenie których dziakki stanowią wlasność Inwestora. Projekt przyłącza kanalizacji deszczowej opracowany według oddzielnego postepowania

G. Zaopatrzenie w wodę do celów przeciwpażarowych.

Zaopatrzenie w wodę do zewnętrznego gaszenia pożaru zapewnione będzie z istniejącej sieci wodociągowej. Hydrant nadziemny do celów pożarowych zlokalizowany jest na dziakee nr. IOCI na terenie objętym projekkowaniem w odległości 11 m od budynku objętego niniejszym. Kolejny hydrant zlokalizowany w odleglaści do 150 m .

7. Komunikacja drogi pożarowe i miejsca postajowe.

1. Dojazd i dojście na działkę - istniejący.
2. Istniejące miejsca postajowe dla samochodów - utwardzone nawierzchnią z plyt betonowych ażurowych i nawierzchni bitumicznej.
3. Dojazd do celów pożarowych zapewniony jest istniejącym zjazdem z drogi publicznej krajowej na utwardzony plac manewrowy przed budynkiem.

DECYZJA
 o ustaleniu lokalizacji inwestycji celu publicznego

Na podstawie art. 4 ust. 2 pkt 2, art. 59 ust. 1 i ust.2, art. 60 ust. 1, oraz art. 61 ust. 1 ustawy z dnia 27 marca 2003r. o planowaniu i zagospodarowaniu przestrzennym (Dz.U. z 2016 poz. 778 z późn. zm) oraz art. 104 ustawy z dnia 14 czerwca 1960r. Kodeks postępowania administracyjnego (Dz. U. 2016, poz. 23 ze zm.) - po rozpatrzeniu wniosku Gminy Zarszyn, ul. Bieszczadzka 74, 38-530 Zarszyn, w imienny której działa Wójt Gminy Andrzej Betlej.

USTALAM

lokalizację inwestycji celu publicznego
dla inwestycji „Przebudowa, rozbudowa i nadbudowa budynku Domu Kultury w Nowosielcach" na dzialkach nr ewid. 1000, 1001, 998/2, 999/12, 999/15, 999/9 polożonych w miejscowości Nowosielce; teren inwestycji wskazano na załączniku graficznym.

1.Rodzai i opis inwestycii:

Usługi publiczne. Dostosowanie istniejącego budynku do potrzeb inwestora.
Powierzchnia rozbudowy do $200 \mathrm{~m}^{2}$.
Wysokość - do 14,5 m.

2. Warunki i szczególowe zasady zagospodarowania terenu oraz jego zabudowy wynikajace z przepisów odrebnych:

a. Warunki i wymagania ochrony i ksztaltowania ladu przestrzennego:

Zgodność z wymogami określonymi w ustawie z dnia 7 lipca 1994 r. Prawo budowlane (Dz.U. 2016 r. poz. 290 z późn. zm.) i w Rozporządzeniu Ministra Infrastruktury z dnia 12 kwietnia 2002 r. w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie (Dz. U. z 2015r. poz. 1422 z późn. zm.).
b. Warunki ochrony dziedzictwa kulturowego, zabytków i dóbr kultury oraz ochrony środowiska izdrowia ludzi:

- Teren zamierzenia inwestycyjnego znajduje się poza obszarami prawnie chronionymi.
- Na terenie objętym decyzją nie ma obiektów dziedzictwa kulturowego, zabytków oraz dóbr kultury.
c. Warunki obstugi w zakresie infrastruktury technicznej i komunikacji:
- Zaopatrzenie w media i odprowadzanie ścieków - istniejące.
- Komunikacja: istniejąca.
d. Wymagania dotyczace ochrony interesów osób trzecich:

Obiekt budowlany należy zaprojektować zapewniając wymagania określone w art. 5 ust. 1 pkt 9 ustawy z dnia 7 lipca 1994 r. Prawo budowlane (Dz.U. 2016r. poz. 290 z późn. zm.)
e. Wymagania dotyczace obiektów budowlanych na terenach górniczych:

Nie dotyczy niniejszej inwestycji.
3.Linie rozgraniczajace teren inwestycii wyznaczono na załączniku graficznym do decyzji sporządzonym na mapie w skali 1:1000 i oznaczono literami ABCD.

UZASADNIENIE

Inwestor złożył wniosek o wydanie decyzji o ustaleniu lokalizacji inwestycji celu publicznego dla inwestycji „Przebudowa, rozbudowa i nadbudowa budynku Domu Kultury w Nowosielcach" na działkach nr ewid. 1000, 1001, 998/2, 999/12, 999/15, 999/9 położonych w miejscowości Nowosielce.

Zgodnie z art. 4 ust. 2 ustawy z dnia 27 marca 2003 r. o planowaniu i zagospodarowaniu przestrzennym, zwanej dalej ustawą, w przypadku braku miejscowego planu zagospodarowania przestrzennego, sposób zagospodarowania terenu i warunki zabudowy ustala się w drodze decyzji o warunkach zabudowy wydanej na podstawie obowiązujących ustaw.

Teren objęty wnioskiem nie jest objęty miejscowym planem zagospodarowania przestrzennego - stąd też wydanie niniejszej decyzji nastąpiło w trybie braku planu, zgodnie z obowiązującymi w tym zakresie przepisami ustawy.

Analizując zgromadzony materiał stwierdzono co następuje:

- Teren objęty wnioskiem nie jest przeznaczony pod lokalizację ponadlokalnej inwestycji celu publicznego.
- Zamierzenie inwestycyjne - zgodnie z art. 6 ustawy o gospodarce nieruchomościami z dnia 21 sierpnia 1997 r. (Dz.U. z 2015, poz. 1774 z późniejszymi zmianami), jest celem publicznym.
- Teren nie wymaga zgody na zmianę przeznaczenia gruntów rolnych na cele nierolnicze teren inwestycji nie obejmuje gruntów chronionych.
- Decyzja nie narusza wymogów przepisów odrębnych.

Decyzję uzgodniono w myśl art. 53. ust. 4 pkt 6 ustawy o planowaniu i zagospodarowaniu przestrzennym z dnia 27 marca 2003 r.: w trybie art. 106 Kodeksu postępowania administracyjnego.

Biorąc powyższe pod uwagę, jak również fakt, że w toku postępowania żadna z zainteresowanych stron nie wniosła istotnych uwag i zastrzeżeń - orzeczono jak w sentencji decyzji.

Sposób zagospodarowania terenu i warunki zabudowy dla planowanego zamierzenia inwestycyjnego ustalono biorąc pod uwagę przepisy szczególne, dokumenty złożone przez wnioskodawce, wyniki z analizy funkcji oraz cech zabudowy i zagospodarowania terenu inwestycji i obszaru sąsiadującego oraz analizy stanu faktycznego i prawnego terenu objętego wnioskiem.

POUCZENIE

Od niniejszej decyzji służy stronom prawo wniesienia odwołania do Samorządowego Kolegium Odwoławczego w Krośnie ul, Bieszczadzka 1 za moim pośrednictwem w terminie 14 dni od daty jej otrzymania.

Zgodnie z art. 53 pkt 6 ustawy z dnia 27 marca 2003r. o planowaniu i zagospodarowaniu przestrzennym, odwołanie od decyzji o ustaleniu lokalizacji inwestycji celu publicznego powinno zawierać zarzuty odnoszące się do decyzji, określać istotę i zakres żądania będącego przedmiotem odwołania oraz wskazywać dowody uzasadniające to żądanie.

Załączniki :

1. Załącznik graficzny do decyzji sporządzony na mapiew skali 1:1000 stanowiący integralną część niniejszej decyzji.

Otrzymują:

2. Strony postępowania + obwieszczenie;
3. A / a;

Do wiadomości:

1. Marszałek Województwa Podkarpackiego

Al. £. Cieplińskiego 4, 35-010 Rzeszów;

Projekt decyzji opracowal:

Mgr unz Wieslaw Boclanowski
Upráwnitun (do frrfaktowania zagosporarowaniaprzestrzennego
URZAD GRANY
38.5 Zabsinn

DECYZJA NINIEJSZA
JEST OSTATECZNA

KOPIA MAPY ZASADNICZEJ

SKALA 1:1000

Polska Spółka Gazownictwa sp. z o.o.
Oddział Zakład Gazowniczy w Jaśle
ul. Floriańska 112, 38-200 Jasło
tel. 134462015 do 18, faks 134463246

Gazownia w Sanoku

ul. Zabłotce 54, 38-500 Sanok
tel. 134655117

> Gmina Zarszyn
> ul. Bieszczadzka 74
> $38-530$ Zarszyn

Wasz znak:
Nasz znak: PSG6VI/GAZ/18W/505753/17-
Sanok, 13.06.2017 242/1/17

WARUNKI TECHNICZNE

Przebudowy istniejącego przyłącza gazu niskiego ciśnienia ze względu na rozbudowę budynku na dz. nr 1000 w m. Nowosielce

I. CHARAKTERYSTYKA OBIEKTU

Miejscowość/Gmina / dzielnica: Nowosielce, gm.Zarszyn, pow.sanocki, woj.PODKARPACKIE
Ulica / nr działki / inne określenia miejsca: 1000
Jednostka eksploatująca: Gazownia w Sanoku
Rodzaj paliwa gazowego wg grupy (PN-C 04750, PN-C-04753) E
II. STAN ISTNIEJĄCY OBIEKTU

Typ elementu infrastr.	Ciśnienie	Średnica	Materiał	Długość [m]	Miejscowość Ulica	Ilość sztuk	Uwagi
PRZYL	N/C	DN 25	Stal	11.9	Nowosielce	1	

III. STAN DOCELOWY OBIEKTU

Typ elementu infrastr.	Ciśnienie	Średnica	Materiał	Długość orientacyjna $[\mathrm{m}]$	Miejscowość Ulica	Ilość sztuk	Uwagi
przyłącz	N/C	dn 40	PE	5	Nowosielce NIE DOTYCZY	1	

IV. WYMAGANIA DOTYCZĄCE REALIZACJI

1. Wymagania ogólne

Przyłącza gazowe należy projektować zgodnie z wymaganiami określonymi w Rozporządzeniu Ministra Gospodarki z dnia 26 kwietnia 2013 r. w sprawie warunków technicznych, jakim powinny odpowiadać sieci gazowe i ich usytuowanie (Dz. U. z 2013 r. poz. 640) oraz Rozporządzeniu Ministra Infrastruktury z dnia 12 kwietnia 2002 r. w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie z późniejszymi zmianami (tekst jednolity Dz. U. z 2015 r. poz. 1422).
Przyłącza gazowe powinny być budowane z zastosowaniem wyrobów budowlanych wprowadzonych do obrotu zgodnie z wymaganymi Ustawy z dnia 16 kwietnia 2004 r. o wyrobach budowlanych (tekst jednolity Dz. U. z 2016 r. poz. 1570) i być oznakowane oznakowaniem CE lub znakiem budowlanym B zgodnie z art. 5 ww . ustawy.
Szczegółowego doboru rur należy dokonać uwzględniając optymalizację kosztów zadania, przy zachowaniu wymaganych współczynników bezpieczeństwa.

2. Przyłącza i punkty gazowe

Przyłącza z PE należy projektować i wykonywać zgodnie z regulacją PSG „Zasady projektowania gazociągów oraz budowy, technologii zgrzewania i napraw polietylenowych sieci gazowych".
Przyłącza stalowe należy projektować i wykonywać zgodnie z regulacją PSG „Zasady budowy, technologii spajania i napraw stalowych sieci gazowych".
Usytuowanie punktu gazowego powinno odpowiadać warunkom technicznym wynikającym z Rozporządzenia Ministra Infrastruktury z dnia 12.04.2002 r. w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie (Dz. U. 2002 nr 75 poz. 690) z późniejszymi zmianami oraz Standardów Technicznych ST-IGG-0502; ST-IGG-0401. Od nowej lokalizacji punktu gazowego należy wykonać połączenie z istniejącą instalacją wewnętrzną zgodnie z obowiązującymi przepisami Prawa Budowlanego oraz w/w Rozporządzeniem Ministra Infrastruktury.
3. Wymagania w zakresie stosowanych wyrobów:

- Obiekty powinny być budowane z zastosowaniem wyrobów budowlanych wprowadzonych do obrotu zgodnie z wymaganiami Ustawy z dnia 16 kwietnia 2004r. o wyrobach budowlanych (Dz. U. 2014, poz. 883) i oznakowanych znakiem CE lub znakiem budowlanym B zgodnie z § 5 ustawy o wyrobach budowlanych.
- Własności materiałowe i wytrzymałościowe wyrobów budowlanych powinny być potwierdzone w dokumentach kontroli, świadectwie odbioru 3.1 zgodnie z PNEN 10204 Wyroby metalowe - Rodzaje dokumentów kontroli.
- Wyroby budowlane, które są objęte normami zharmonizowanymi z właściwą dyrektywą lub są zgodne z wydaną dla nich europejską oceną techniczną oprócz ww. dokumentów kontroli powinny mieć dołączoną deklarację zgodności sporządzoną przez producenta lub jego upoważnionego przedstawiciela.

4. Wymagania dla dokumentacji projektowej.

Dokumentacja musi spełniać wymagania:

- Ustawy prawo budowlane (tekst jednolity Dz. U. z 2016 r. poz. 290),
- Rozporządzenia Ministra Transportu, Budownictwa i Gospodarki Morskiej z dnia 25 kwietnia 2012 r. w sprawie szczegółowego zakresu i formy projektu budowlanego (Dz.U. z 2012 r. poz. 462 z późn. zm.),
- Rozporządzenia Ministra Infrastruktury z dnia 02.09.2004r. w sprawie szczegółowego zakresu i formy dokumentacji projektowej, specyfikacji technicznych wykonania i odbioru robót budowlanych oraz programu funkcjonalno-użytkowego (tekst jednolity Dz. U. z 2013 r. poz. 1129).

V. UZGODNIENIA

1. Należy opracować projekt przebudowywanego przyłącza gazu oraz uzyskać wymagane prawem budowlanym uzgodnienia i decyzje. Szczegóły techniczne przebudowy ustalać z .
2. Projekt uzgodnić w. Dokumentację projektową dostarczyć w wersji papierowej i cyfrowej.

VI. DANE INWESTORA I WARUNKI FINANSOWANIA

1. Dane Inwestora
2. W ślad za wydanymi warunkami technicznymi zostanie wystawiona faktura VAT.
3. Projekt oraz przebudowę przyłącza gazu należy wykonać kosztem i staraniem Inwestora.
4. Uzgodnienie projektu zostanie dokonane odpłatnie wg obowiązującego w PSG sp. z o.o. Cennika Usług Pozataryfowych.
5. Wszelkie prace wykonywane w sąsiedztwie sieci gazowej prowadzić ręcznie w uzgodnieniu i pod nadzorem, ul. ,. Prace związane z nadzorem zostaną wykonane odpłatnie na pisemne zlecenie Inwestora. O terminie prowadzenia prac należy powiadomić pisemnie Gazownie z 14 -sto dniowym wyprzedzeniem.
6. Włączenie przebudowywanego przyłącza do czynnej sieci gazowej zostanie wykonane przez odpłatnie, na zlecenie Inwestora. Wykonany przyłącz należy przygotować do włączenia zgodnie z wymogami Gazowni. Gazociąg wyłączony z eksploatacji należy odgazować poprzez przedmuchanie gazem obojętnym
7. Kalkulacja kosztów związanych z nadzorem oraz włączeniem przebudowywanego przyłącza do czynnej sieci gazowej zostanie sporządzona zgodnie z zasadami
obowiązującymi w PSG sp. z o.o. Oddział Zakład Gazowniczy w Krakowie.

VII. UWAGI KOŃCOWE

1. Inwestor uzyska prawo do dysponowania gruntem którego nie jest właścicielem, w celu przebudowy sieci gazowej z wykorzystaniem wzorów dokumentów obowiązujących w PSG.
2. Inwestor zobowiązany jest do pisemnego poinformowania Gazowni o wyborze wykonawcy przebudowy istniejącego przyłącza oraz uzyskania zgody Gazowni na wykonanie tych prac przez wskazanego wykonawcę.
3. Odpowiedzialność za uszkodzenie istniejącej sieci gazowej podczas robót ponosi Inwestor. Ewentualne zniszczenia oznakowania istniejącej sieci gazowej należy odnowić po zakończeniu robót
4. Ważność warunków określa się do dnia realizacji inwestycji.

Z poważaniem

Sprawę prowadzi: Małgorzata Lewicka tel. 134655117; 134649280 (17)
Do wiadomości:

- Gazownia w Sanoku a/a

Załączniki:

- mapa sytuacyjna

TECHNICZNE WARUNKI PRZEŁOŻENIA PRZYŁĄCZA KANALIZACJI SANITARNEJ NA DZIAŁCE NR 1000, POŁOŻONEJ W NOWOSIELCACH:

1. Opracować projekt techniczny przyłącza kanalizacji sanitarnej i i uzgodnić go z ZGK,
2. Wpięcie przekładanego przyłącza kanalizacji sanitarnej wykonać należy poprzez wbudowanie studni S1 na przyłączu z budynku przebudowywanego Ksø 160 mm .
3. Zgłosić w ZGK odbiór techniczny prac zanikowych przed zasypaniem wykopu.
4. Zlecić ZGK wpięcie do sieci studni S1 oraz przekładanego przyłącza do nowo wbudowanej studni.
5. Do odbioru końcowego dostarczyć geodezyjną inwentaryzację powykonawczą.
6. Projektowanie przewodów kanalizacyjnych prowadzić zgodnie z obowiązującymi przepisami.
7. Warunki niniejsze zachowują ważność do 24.06.2020r,
8. Wzdłuż projektowanego przewodu kanalizacyjnych należy zachować pas techniczny, na którym zabronione jest wznoszenie budynków, budowli, ogrodzeń, prowadzenie stałych nasadzeń (drzew, krzewów) oraz tym podobnych prac powodujących ograniczenie w dostępie do przyłącza lub mogących negatywnie wpływać na stan techniczny rurociągów.

Informacja o obszarze oddziaływania obiektu

Inwestor: \quad Gmina Zarszyn, ul. Bieszczadzka 74, 38-530 Zarszyn.
Lokalizacja: Nowosielce. Obręb ewidencyjny: Nowosielce [Nr .0004.
Działki nr: 1000, 1001, 1688.

Podstawa prawna sporządzenia

Art. 20 ust. 1 pkt 1c i art. 34 ust. 3 pkt 5 ustawy z dnia 7 lipca 1994 r. - Prawo budowlane (Dz. U. z 2013 poz. 1409 z p. zm.)

Projektowany obiekt

Przebudowa, rozbudowa i nadbudowa budynku Domu Kultury. Lokalizacja: Nowosielce. Obręb ewidencyjny: Nowosielce Nr. [0004] na działkach o numerach ewidencyjnych, 1000, 1001, 1688.

Istniejąca zabudowa dzialki inwestora

Działka zabudowana budynkiem - Dom Kultury.

Istniejąca zabudowa dzialek sąsiednich

Działki w sąsiedztwie; zabudowane budynkami mieszkalnymi jednorodzinnymi i gospodarczymi.

Projektowane zagospodarowanie dzialki

Projektowana przebudowa, rozbudowa i nadbudowa budynku Domu Kultury

Istniejące uzbrojenie terenu w obrębie inwestycji

Przyłącza: kabel elektroenergetyczny, przyłącz kanalizacji sanitarnej, przyłącz wodociągowy, przyłącz gazowy, droga dojazdowa.

Lokalizacja projektowanych obiektów

1) Przebudowa, rozbudowa i nadbudowa budynku - Domu Kultury lokalizowana w odległości : 430 cm od granicy działki nr 1002, od granicy działki nr 999/14-500 cm, od granicy działki nr $1001-430 \mathrm{~cm}$.

Ustalenia z zakresu planowania przestrzennego

Dla terenu inwestycji obowiązuje decyzja o ustaleniu lokalizacji inwestycji celu publicznego Wójta Gminy Zarszyn z dnia 2017. 02. 27, znak; GKP. 6733.1. 2017.ML dla inwestycji " przebudowa, rozbudowa i nadbudowa budynku Domu Kultury w Nowosielcach na działkach o numerach ewidencyjnych $1000,1001,1688$ położonych w miejscowości Nowosielce: teren inwestycji wskazano na załączniku graficznym który jest integralną częścią decyzji.

Przewidywane wplyw projektowanej przebudowy, rozbudowy i nadbudowy budynku Domu Kultury wraz z urządzeniami budowlanymi z nim związanymi na tereny sąsiednie

Projektowana przebudowa, rozbudowa i nadbudowa budynku Domu Kultury, zapewnia możliwość użytkowania go zgodnie z przeznaczeniem, spełnia wymagania o których mowa w art. 5, w tym w ust. 1 pkt 9 ustawy - Prawo budowlane w zakresie poszanowania, występujące w obszarze oddziaływania obiektu, uzasadnione interesy osób trzecich.

Określenie obszaru oddziaływania

Obszar oddziaływania projektowanej przebudowy, rozbudowy i nadbudowy budynku Domu Kultury mieści się na działkach 1000, 1001, 1688 na których została zaprojektowana przebudowa, rozbudowa i nadbudowa budynku Domu Kultury.

Uzasadnienie

Określenie obszaru oddziaływania jest kwestią istotną, ponieważ decyduje o tym, czy inwestor wybuduje projektowaną przebudowę, rozbudowę i nadbudowę na podstawie zgłoszenia, czy na podstawie pozwolenia na budowę. Przebudowa, rozbudowa i nadbudowa budynku Domu Kultury będzie realizowana w trybie pozwolenia na budowę, gdyż obszar oddziaływania dotyczy działki osoby prywatnej, na której miedzy innymi została zaprojektowana przebudowa, rozbudowa i nadbudowa, a za tym stroną postępowania będzie inwestor i właściciel działki numer 1001. Właściciele sąsiednich nieruchomości nie będą brać udziału w postępowaniu przed organem administracji architektoniczno - budowlanej, gdyż odległość od granic działki nie jest mniejsza od 400 cm tym samym zakres inwestycji, nie będzie powodował uciążliwości oraz obszar oddziaływania mieści się na działkach, na których budynek jest przedmiotem projektowania i postepowania.
Zgodnie z art. 3 pkt 20 ustawa z dnia 7 lipca 1994 r. - Prawo budowlane (Dz. U. z 2013 poz. 1409 z p. zm.) pod pojęciem „obszar oddziaływania obiektu" - należy rozumieć teren wyznaczony w otoczeniu obiektu budowlanego na podstawie przepisów odrębnych, wprowadzających związane z tym obiektem ograniczenia w zagospodarowaniu, w tym zabudowy, tego terenu. Przepisy odrębne, o których mowa w art. 3 pkt 20 ustawy - Prawo budowlane:

1) ustawa z dnia 7 lipca 1994 r. - Prawo budowlane (Dz. U. z 2013 poz. 1409 z p. zm.),
2) Rozporządzenie Ministra Infrastruktury z dnia 12 kwietnia 2002 r. w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie (Dz. U. Nr 75, poz. 690 z p. zm.).
Lokalizacja projektowanego budynku wraz z urządzeniami technicznymi, zgodna jest z przepisami § 12 ust. 1 pkt 1 i § 23 ust. 1 Rozporządzenia Ministra Infrastruktury z dnia 12 kwietnia 2002 r. w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie (Dz. U. Nr 75, poz. 690 z p. zm.).
Realizacja projektowanej przebudowy, rozbudowy i nadbudowy budynku Domu Kultury, możliwa jest na podstawie pozwolenia na budowę uzyskanego decyzją, Starosty Sanockiego.

OPINIA GEOTECHNICZNA

USTALENIE GEOTECHNICZNYCH I GEOLOGICZNYCH

WARUNKÓW TERENU

dla rozbudowy Domu Kultury

na działkach nr 998/2 i 1000 w miejscowości Nowosielce gmina Zarszyn, powiat sanocki, województwo podkarpackie

MIEJSCOWOŚĆ: NOWOSIELCE
GMINA: ZARSZYN
POWIAT: SANOCKI
WOJEWÓDZTWO: PODKARPACKIE

INWESTOR: Gmina Zarszyn
ul. Bieszczadzka 74
38-530 Zarszyn

ZLECENIODAWCA:
Zakład Projektowania i Usług Inwestycyjnych Mieczysław Fil ul. Przelotowa 10
38-500 Sanok

OPRACOWNAL:
mgr inż. Sebastian Jurczak
spec. geoloøia inżynierska
upraw. MŚ nr VI - 0391

mgr inż. Maciej Kij

1. Wstęp

1.1 Cel i zakres opracowania.

Ocenę warunków gruntowych opracowano na zlecenie Projektanta - Zakładu Projektowania i Usług Inwestycyjnych Mieczysław Fil, ul. Przelotowa 10, 38-500 Sanok. Inwestorem jest Gmina Zarszyn, ul. Bieszczadzka 74, 38-530 Zarszyn.

Celem niniejszego opracowania jest określenie warunków gruntowo - wodnych oraz parametrów geotechnicznych gruntów występujących w rejonie planowanej rozbudowy budynku Domu Kultury na działkach nr 998/2 i 1000 w miejscowości Nowosielce.

1.2 Materialy archiwalne i dokumenty.

Dokumentacje sporządzono na podstawie:

- Mapy zasadniczej w skali $1: 500$
- Wizji terenowej
- Wykonanych badań własnych
- Rozporządzenia Ministra Transportu, Budownictwa i Gospodarki Morskiej z dnia 25 kwietnia 2012 r. w sprawie ustalenia warunków posadowienia obiektów budowalnych (DZ.U. 2012 poz. 463)
- PN-EN ISO 14688-2 - Badania geotechniczne - Oznaczenie i klasyfikowanie gruntów.
- PN-EN 1997-1 - Eurokod 7 - Projektowanie geotechniczne - część 1 - Zasady ogólne
- PN-88/B-04481 „Grunty budowlane. Badania próbek gruntu"
- PN-86/B-02480 „Gruntu budowlane. Określenia, symbole, podział i opis"
- PN-81/B-03020 „Grunty budowalne. Posadowienie bezpośrednie budowli"
- Zarys Geotechniki, Zenon Wiłun, Warszawa, 2003

2. Warunki morfologiczne i geologiczne

Teren wskazany do badań pod względem administracyjnym położony jest w miejscowości Nowosielce, gmina Zarszyn, powiat sanocki, województwo podkarpackie (załącznik 1). Pod względem geograficznym badany teren znajduje się w południowej części mezoregionu Kotlina Jasielsko-Krośnieńska wchodzącego w skład makroregionu Pogórze Środkowobeskidzkie, podprowincji Zewnętrzne Karpaty Zachodnie. Teren badań zlokalizowany jest w dolinie, dnem której płynie potok Pielnica. Rzędna terenu badań wynosi od około 305 m n.p.m. do około 306 m n.p.m. Wody opadowe z danego terenu odprowadzane są do potoku Pielnica, będącego dopływem rzeki Wisłok.

Podłoże badanego terenu budują piaskowce gruboławicowe z wkładkami łupków (typu leskiego) - warstwy krośnieńskie dolne, zaliczane do oligocenu. Na nich występują warstwy zwietrzeliny, pospółki oraz gliny piaszczystej wiekowo zaliczane do czwartorzędu, których miąższość wynosi do około 3 metrów. Na powierzchni w otworach O-1 i O-2 występuje nasyp.

3. Opis wykonywanych prac

Dla określenia warunków geotechnicznych na badanym terenie wykonano 3 otwory badawcze do głębokości 2,2-3,6 m p.p.t. (załącznik $3.1-3.3$) oraz sondowanie sondą DPL do głębokości $2,2 \mathrm{~m}$ p.p.t. (załącznik 4). Położenie wyrobisk badawczych przedstawiono na mapie dokumentacyjnej będącej załącznikiem 2 niniejszego opracowania. Otwory zakończono w warstwie której nie udało się przewiercić. Przewiercone grunty przebadano makroskopowo określając ich rodzaj i konsystencję. W terenie punkty badań wyznaczono metodą domiarów prostokątnych przy pomocy taśmy. Podane w niniejszym opracowaniu rzędne wysokościowe wyrobisk są orientacyjne, wyznaczone z mapy sytuacyjno wysokościowej w skali 1:500 dostarczonej przez Zleceniodawcę.

Wartości parametrów geotechnicznych określono metodą autorską według obowiązującej normy PN-EN ISO 14688-2 korzystając z wyników przeprowadzonych badań. Wartości parametrów geotechnicznych w niniejszym opracowaniu podane zostały według normy PN-81/B-03020 „Grunty budowlane. Posadowienie bezpośrednie budowli".

4. Warunki wodne.

W otworach O-1 i O-3 na głębokości $2,5 \mathrm{~m}$ p.p.t. występuje swobodne zwierciadło wody gruntowej. W otworze $\mathrm{O}-2$ nie stwierdzono występowania wód gruntowych.

5. Ocena właściwości gruntów zalegających w podłożu.

Charakterystyki geotechnicznej podłoża gruntowego dokonano w oparciu o badania makroskopowe wykonane w terenie oraz wytyczne normy PN-EN ISO 14688-2. Wyniki tych badań wykazały występowanie na terenie badań następujących warstw geotechnicznych:

Warstwa geotechniczna Ia

Występuje w postaci gliny piaszczystej w stanie twardoplastycznym na pograniczu plastycznego. Nawiercona została w otworze O-3 na głębokości $1,3 \mathrm{~m}$ p.p.t.. Grunty warstwy Ia ze względu na nośność posiadają mało korzystne parametry geotechniczne. Parametry gruntów w tej warstwie wynoszą:

- gęstość objętościowa
- stopień plastyczności
- kąt tarcia wewnętrznego
- spójność
- moduł pierwotnego odkształcenia gruntu
- edometryczny moduł ściśliwości pierwotnej

$$
\begin{aligned}
& \rho=2,1\left[t / \mathrm{m}^{3}\right] \\
& \mathrm{I}_{\mathrm{L}}=0,25 \\
& \varphi_{\mathrm{U}}=14,0^{\circ} \\
& \mathrm{C}_{\mathrm{u}}=15,00[\mathrm{kPa}] \\
& \mathrm{E}_{0}=18,42[\mathrm{MPa}] \\
& \mathrm{M}_{0}=26,32[\mathrm{MPa}]
\end{aligned}
$$

Warstwa geotechniczna Ib

Występuje w postaci gliny piaszczystej w stanie twardoplastycznym. Występuje we wszystkich otworach. Grunty warstwy Ib ze względu na nośność posiadają korzystne parametry geotechniczne. Parametry gruntów w tej warstwie wynoszą:

- gęstość objętościowa
- stopień plastyczności
- kąt tarcia wewnętrznego
- spójność
- moduł pierwotnego odkształcenia gruntu
- edometryczny moduł ściśliwości pierwotnej

$$
\begin{aligned}
& \rho=2,2\left[t / \mathrm{m}^{3}\right] \\
& \mathrm{I}_{\mathrm{L}}=0,15 \\
& \varphi_{\mathrm{U}}=15,6^{\circ} \\
& \mathrm{C}_{\mathrm{u}}=19,29[\mathrm{kPa}] \\
& \mathrm{E}_{0}=23,09[\mathrm{MPa}] \\
& \mathrm{M}_{0}=32,99[\mathrm{MPa}]
\end{aligned}
$$

Warstwa geotechniczna II

Występuje w postaci pospółki w stanie zagęszczonym. Nawiercona została we wszystkich otworach. Grunty warstwy II ze względu na nośność posiadają korzystne parametry geotechniczne. Parametry gruntów w tej warstwie wynoszą:

- gęstość objętościowa
- stopień zagęszczenia
- kąt tarcia wewnętrznego
- moduł pierwotnego odkształcenia gruntu
- edometryczny moduł ściśliwości pierwotnej

$$
\begin{aligned}
& \rho=2,00\left[\mathrm{t} / \mathrm{m}^{3}\right] \\
& \mathrm{I}_{\mathrm{D}}=0,75 \\
& \varphi_{\mathrm{U}}=40,3^{\circ} \\
& \mathrm{E}_{0}=186,41[\mathrm{MPa}] \\
& \mathrm{M}_{0}=207,71[\mathrm{MPa}]
\end{aligned}
$$

Warstwa geotechniczna III

Występuje w postaci zwietrzeliny piaskowca w stanie półzwartym. Nawiercona została we wszystkich otworach. Grunty warstwy III ze względu na nośność posiadają korzystne parametry geotechniczne. Parametry gruntów w tej warstwie wynoszą:

- gęstość objętościowa
- stopień plastyczności
- kąt tarcia wewnętrznego
- spójność
- moduł pierwotnego odkształcenia gruntu
- edometryczny moduł ściśliwości pierwotnej

$$
\begin{aligned}
& \rho=2,1\left[\mathrm{t} / \mathrm{m}^{3}\right] \\
& \mathrm{I}_{\mathrm{L}}=0,00 \\
& \varphi_{\mathrm{U}}=18,0^{\circ} \\
& \mathrm{C}_{\mathrm{u}}=30,00[\mathrm{kPa}] \\
& \mathrm{E}_{0}=33,85[\mathrm{MPa}] \\
& \mathrm{M}_{0}=48,35[\mathrm{MPa}]
\end{aligned}
$$

Warstwa geotechniczna IV

Wysteqpuje w otworach O-1 i O-2 w postaci nasypu niekontrolowanego. Jest to grunt antropogeniczny o parametrach niemożliwych do jednoznacznego określenia ze względu na zmienny skład i konsystencję. Grunty warstwy IV ze względu na nośność posiadają niekorzystne parametry geotechniczne.

Zestawienie parametrów charakterystycznych dla wydzielonych warstw geotechnicznych znajduje się w załączniku 6 niniejszego opracowania.

Na podstawie wykonanych badań sporządzono przekrój geotechniczny (załącznik 5).

6. Wnioski i zalecenia.

1. W wyniku rozpoznania geologicznego na terenie inwestycji stwierdzono występowanie gliny piaszczystej w stanie twardoplastycznym na pograniczu plastycznego oraz w stanie twardoplastycznym, pospółki w stanie zagęszczonym, zwietrzeliny piaskowca w stanie półzwartym oraz nasypu niekontrolowanego. Warstwy te zalegają na głębokości od 2,2 do $3,6 \mathrm{~m}$ p.p.t. Warstw leżących głębiej nie nawiercono.
2. Warunki geotechniczne podłoża należy określić jako proste warunki gruntowe. Zgodnie z Rozporządzeniem Ministra Transportu, Budownictwa i Gospodarki Morskiej z dnia 25.04.2012 - poz. 463 „W sprawie ustalenia warunków posadowienia obiektów budowlanych" można określić jako I kategorię geotechniczną.
3. W otworach O-1 i O-3 na głębokości $2,5 \mathrm{~m}$ p.p.t. występuje swobodne zwierciadło wody gruntowej. W otworze O-2 nie stwierdzono występowania wód gruntowych.
4. Wszelkie prace ziemne należy wykonywać w okresie suchym, zwracając szczególną uwagę na zabezpieczenie wykopów przed zalaniem i stagnowaniem wód, co może wpłynąć na uplastycznienie gruntów warstwy I.
5. Obliczając opór podłoża na podstawie podanych parametrów należy uwzględnić współczynniki zmniejszające: materiałowy $\gamma_{\mathrm{m}} .=0,9$ lub 1,1 (przyjąć mniej korzystny).

Mapa topograficzna Miejscowość: Nowosielce Skala 1:10 000

Objaśnienia:

- Teren wykonywanych robót geologicznych

Profil numer O-1

m n.p.m.

	10.8 m	
$0-2$	$0-1$	

	$\begin{gathered} \text { Zał.Nr } \\ 5 \end{gathered}$
OPINIA GEOTECHNICZNA dla rozbudowy Domu Kultury na działkach nr 998/2 i 1000 w miejscowości Nowosielce	
Przekrój geotechniczny I - I'	Skala 1: $\frac{50}{200}$

Zestawienie parametrów charakterystycznych dla wydzielonych warstw geotechnicznych

	慈	$\begin{aligned} & \text { E } \\ & \text { E } \\ & \text { ED } \\ & \text { En } \\ & \text { En } \end{aligned}$		Gęstość objętościowa $\rho[t / \mathrm{m} 3]$	$\begin{gathered} \text { Stopień } \\ \text { zagęzzczenia } \\ \text { Id } \end{gathered}$	Stopień plastyczności IL	Spójność $\mathrm{C}_{\mathrm{n}}[\mathrm{kPa}]$	$\begin{gathered} \text { Kąt tarcia } \\ \text { wewnętrznego } \\ \Phi_{\mathrm{U}} \end{gathered}$	Moduł pierwotnego odksztalcenia gruntu Eo [MPa]	Edometryczny moduł ściśliwości pierwotnej Mo [MPa]
Ia	Gp	tpl/p	w	2,10	-	0,25	15,00	14,0	18,42	26,32
lb	Gp	tpl	w	2,20	-	0,15	19,29	15,6	23,09	32,99
II	Po	zg	w/m	2,00	0,75	-	-	40,3	186,41	207,71
III	KW(pc)	pzw	-	2,10	-	0,00	30,00	18,0	33,85	48,35
IV	nN	-	Grunt antrpogeniczny o parametrach niemozliwych do jednoznacznego okreslenia ze względu na zmienny skład i							

Ekspertyza techniczna stanu konstrukcji i elementów istniejącego budynku Domu Kultury zlokalizowanego na działkach nr 1000.1001, 1688 w miejscowości Nowosielce z uwzględnieniem
 stanu
 podłoża gruntowego w związku przebudową, rozbudową i nadbudową budynku - Dom Kultury.

Inwestor: Gmina Zarszyn

Ul. Bieszczadzka
 74

38-530 Zarszyn
Lokalizacja: Obręb:[0004] Nowosielce.
Działki nr 1000, 1001, 1688.

1. Podstawa merytoryczna opracowania

- wizja lokalna
- pomiary inwentaryzacyjne.
- ocena stanu technicznego budynku.

2. Przedmiot, cel i zakres opracowania.

Przedmiotem opracowania jest budynek Dom Kultury zlokalizowany w miejscowości Nowosielce - działki 1000, 1001 i 1688.
Celem opracowania jest określenie możliwości przebudowy, rozbudowy i nadbudowy budynku Domu Kultury.

3. Stan techniczny budynku.

> budynek dwukondygnacyjny wolnostojący częściowo podpiwniczony, ściany murowane z cegły silikatowej i bloczków betonu komórkowego PGS, stropy mieszane i podciągi żelbetowe. Z przeprowadzonej analizy wynika, że istniejący budynek w którym projektowana przebudowa, rozbudowa i nadbudowa istniejącego budynku Domu Kultury, elementy konstrukcyjne ściany fundamentowe, ściany konstrukcyjne - zewnętrzne, wewnętrzne budynku nie wskazują na zniszczenia pęknięcia, są w dobrym stanie technicznym. Pokrycie i więźba dachowa podlega rozbiórce ze względu na: lokalizację na poziomie poddasza pomieszczeń lokali użytkowych. Wbudowanie więźby dachowej dla potrzeb przebudowy strychu a za tym na
zakres wynikający z przeprojektowania więźby i połaci dachowej polega zmianie spadku połaci dachowej i wykonanie ścianki kolankowej z połączeniem rdzeniami żelbetowymi. Po wykonaniu rozbiórki więźby dachowej pod przebudowę i nadbudowę należy wykonać wieniec żelbetowy który rozwiązany konstrukcyjno w projekcie wykonawczym konstrukcyjnym dla połączenia prętami stalowymi z projektowaną murłatą. W istniejącym budynku Domu Kultury ściany zewnętrzne, nadproża, gzymsy są w dobrym stanie technicznym.

Ściany konstrukcyjne na poziomie i wysokości piwnic, parteru i I piętra nie wykazują pęknięć a za tym jest to element świadczący o stabilności obiektu i gruntu.

4. Wnioski i zalecenia.

4.1. Na okoliczność przebudowy, rozbudowy i nadbudowy istniejącego budynku w istniejącym budynku jest wymaga przebudowa elementów konstrukcyjnych budynku - ściany szczytowe, ściany kolankowe strychu-poddasza.
4.2. Stan podłoża gruntowego i elementów budynku dopuszczają możliwość przebudowy, rozbudowy i nadbudowy na elementach konstrukcyjnych istniejącego budynku.
4.3. Nadbudowa budynku mieszkalnego nie będzie miała wpływu na elementy konstrukcyjne budynku a dodatkowe obciążenia przeniesie grunt, ściany fundamentowe i stropy. Istniejący strop nad salą widowiskową wzmocniony belkami stalowymi.
4.4. Przebudowa, rozbudowa i nadbudowa istniejącego budynku wymaga posadowienia na projektowanych ławach i ścianach fundamentowych.
4.5.Projektowana przebudowa, rozbudowa i nadbudowa, posadowienie budynku wykonywać według rozwiązania określonego w projekcie architektonicznym i w projekcie konstrukcyjnym będącym przedmiotem niniejszego opracowania.

Sanok-05-2017 rok Projektant:

CHARAKTERYSTYKA ENERGETYCZNA BUDYNKU

PARAMETRY PRZEGRÓD BUDOWLANYCH							
PRZEGRODY							
L.P.	SYMBOL	OPIS	RODZA	$\frac{U}{\left[W^{2} / m^{2}\right]}$	$\begin{aligned} & U \max \\ & {\left[\mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}\right]} \end{aligned}$	Stan	WT 2021
1	DACH	Dach	Dach	0,145	0,150	P	\checkmark
2	PODt-PIW	Podłoga w piwnicy	Podłoga w piwnicy	0,261	1,200	P	\checkmark
3	SZ	Ściana zewnętrzna	Ściana zewnętrzna	0,154	0,200	P	\checkmark
4	STR_DACH	Strop pod nieogrzewanym poddaszem	Strop pod nieogrzewanym poddaszem	0,144	0,150	P	\checkmark
5	SW	Ściana wewnętrzna	Ściana wewnętrzna	0,598	1,000	P	\checkmark
OKNA I DRZWI							
L.P.	SYMBOL	OPIS	96	$\underset{\left[W / m^{2} \mathrm{~K}\right]}{U}$	$\begin{aligned} & \text { Umax } \\ & {\left[\mathrm{W} / \mathrm{m}^{2} \mathrm{~K}\right]} \end{aligned}$	Stan	WT 2021
1	DRZ_WEW	Drzwi wewnętrzne		1,300	1,300	P	\checkmark
2	DRZ_ZEW	Drzwi zewnętrzne	0,50	1,300	1,300	P	\checkmark
3	OK-DACH	Okna zewnętrzne w dachu	0,50	1,100	1,100	P	\checkmark
4	OKNO	Okno zewnętrzne	0,50	0,900	0,900	P	\checkmark

OGRZEWANIE I WENTYLACJA

PARAMETRY ENERGETYCZNE			
ZAPOTRZEBOWANIE NA EnERGĮ̇ UŻ̀TKOWA BEZ URZADZEŃ POMOCNICZYCH	QH,nd	[kWh/rok]	264922,6
ZAPOTRZEBOWANIE NA ENERGĮ̇ KOŃCOWA BEZ URZADZEŃ POMOCNICZYCH	QK,H	[kWh/rok]	287 309,2
ZAPOTRZEBOWANIE NA ENERGIĘ PIerwotna bez urzadzen pomocniczych		[kWh/rok]	316 040,1
ZAPOTRZEBOWANIE NA ENERGĮ̇ UŻ̌TKOWA DO NAPĘDU URZADZEŃ POMOCNICZYCH		[kWh/rok]	19722,1
ZAPOTRZEBOWANIE NA ENERGIĘ KOŃCOWA DO NAPĘDU URZADZEŃ POMOCNICZYCH	Eel,pom, H	[kWh/rok]	19722,1
ZAPOTRZEBOWANIE NA ENERGIĘ PIERWOTNA DO NAPĘDU URZADZEŃ POMOCNICZYCH		[kWh/rok]	59166,4
ZAPOTRZEBOWANIE NA ENERGİ UŻ̌TKOWA		[kWh/rok]	284 644,8
ZAPOTRZEBOWANIE NA ENERGIĘ KOŃCOWA		[kWh/rok]	307031,3
ZAPOTRZEBOWANIE NA ENERGIĘ PIERWOTNA	QP,H	[kWh/rok]	375 206,5
Powierzchnia o regulowanej temperaturze	Af	[m^{2}]	2303,5
POWIERZCHNIA UŻ̌TKOWA		[m^{2}]	2303,5
Powierzchnia użttkowa o regulowane temperaturze		[m]	2303,5

OPIS SYSTEMU OGRZEWANIA

Kotły gazowe kondensacyjne, instalacja z izolacją termiczną w układzie trójnikowym, grzejniki płytowe z zaworami termostatycznymi.
SYSTEM INSTALACJI OGRZEWANIA I WENTYLACJI NATURALNEJ

PARAMETRY ENERGETYCZNE			
ZAPOTRZEBOWANIE NA ENERGIĘ UŻYTKOWA BEZ URZADZEŃ POMOCNICZYCH	QH,nd	[kWh/rok]	264 922,6
ZAPOTRZEBOWANIE NA ENERGIĘ KOŃCOWA BEZ URZADZEŃ POMOCNICZYCH	QK,H	[kWh/rok]	287 309,2
ZAPOTRZEBOWANIE NA ENERGIĘ PIERWOTNA BEZ URZADZEŃ POMOCNICZYCH		[kWh/rok]	316040,1
ZAPOTRZEBOWANIE NA ENERGIĘ UŻYTKOWA DO NAPĘDU URZADZEŃ POMOCNICZYCH		[kWh/rok]	19722,1
ZAPOTRZEBOWANIE NA ENERGIĘ KOŃCOWA DO NAPĘDU URZADZEŃ POMOCNICZYCH	Eel,pom, H	[kWh/rok]	19722,1
ZAPOTRZEBOWANIE NA ENERGIE PIERWOTNA DO NAPĘDU URZADZEŃ POMOCNICZYCH		[kWh/rok]	59 166,4
ZAPOTRZEBOWANIE NA ENERGIĘ UŻYTKOWA		[kWh/rok]	284 644,8
ZAPOTRZEBOWANIE NA ENERGIĘ KOŃCOWA		[kWh/rok]	307 031,3
ZAPOTRZEBOWANIE NA ENERGIĘ PIERWOTNA	QP,H	[kWh/rok]	375 206,5

STAROSTWO POWIATOWE w SANOKU

POWIERZCHNIA O REGULOWANEJ TEMPERATURZE Af	$\left[\mathrm{m}^{2}\right]$	2303,5
POWIERZCHNIA UŻYTKOWA	[m^{2}]	2 303,5
POWIERZCHNIA UŻYTKOWA O REGULOWANEJ TEMPERATURZE	[m^{2}]	2303,5
PARAMETRY PRACY	$\left[{ }^{\circ} \mathrm{C}\right]$	55/45
NOŚNIK ENERGII KOŃCOWEJ		
PALIWA - Gaz ziemny		
WSPÓtCZYNNIK NAKŁADU NIEODNAWIALNEJ ENERGII PIERWOTNEJ NA WYTWORZENIE I DOSTARCZENIE NOŚNIKA ENERGII LUB ENERGII DO BUDYNKU	wi	1,10
RODZAJ ŹRÓDLA CIEPLA		
KOCIOŁ GAZOWY KONDENSACYJNY - 50-120 kW (55/45 ${ }^{\circ} \mathrm{C}$)		
ŚREDNIA SEZONOWA SPRAWNOŚĆ WYTWORZENIA NOŚNIKA CIEPEA Z ENERGII DOSTARCZONEJ DO GRANICY BILANSOWEJ BUDYNKU	$\eta \mathrm{H}, \mathrm{g}$	0,98
LOKALIZACJA ŹRÓDLA CIEPEA		
OGRZEWANIE CENTRALNE WODNE - z lokalnego źródła ciepła usytuowanego w ogrzewanym budynku - z zaizolowanymi przewodami, armatura i urzadzeniami - w pomieszczeniach ogrzewanych		
ŚREDNIA SEZONOWA SPRAWNOŚĆ TRANSPORTU NOŚNIKA CIEPŁA W OBRĘBIE BUDYNKU	$\eta \mathrm{H}, \mathrm{d}$	0,97
RODZAJ INSTALACJI		
OGRZEWANIE WODNE - grzejniki członowe/płytowe - z regulacją centralną - i miejscową (zakres P-1 K)		
ŚREDNIA SEZONOWA SPRAWNOŚĆ REGULACJI I WYKORZYSTANIA CIEPŁA W OBRĘBIE BUDYNKU	$\eta \mathrm{H}, \mathrm{e}$	0,97
PARAMETRY ZASOBNIKA BUFOROWEGO I JEGO USYTUOWANIE		
BRAK ZASOBNIKA BUFOROWEGO		
ŚREDNIA SEZONOWA SPRAWNOŚĆ AKUMULACJI CIEPLA W ELEMENTACH POJEMNOŚCIOWYCH SYSTEMU GRZEWCZEGO	$\eta \mathrm{H}, \mathrm{s}$	1,00
ŚREDNIA SEZONOWA SPRAWNOŚĆ CALKOWITA INSTALACJI	$\eta \mathrm{H}$,tot, i	0,92
URZADZENIA POMOCNICZE		
POMPY OBIEGOWE		
POMPY OBIEGOWE ogrzewania - w budynku o AU do $250 \mathrm{~m}^{2}$ - grzejniki podłogowe - granica ogrzewania $15^{\circ} \mathrm{C}$		
ŚREDNIA MOC JEDNOSTKOWA POMP OBIEGOWYCH	qel $\quad\left[\mathrm{W} / \mathrm{m}^{2}\right]$	0,85
ŚREDNI CZAS DZIAEANIA POMP OBIEGOWYCH	tel $\quad[\mathrm{h} / \mathrm{rok}]$	8760
NAPĘD POMOCNICZY I REGULACJA KOTEA		
NAPĘD POMOCNICZY i regulacja kotła do ogrzewania - w budynku o AU ponad $250 \mathrm{~m}^{2}$		
ŚREDNIA MOC JEDNOSTKOWA NAPĘDÓW POMOCNICZYCH I REGULACJI KOTŁA	qel $\quad\left[\mathrm{W} / \mathrm{m}^{2}\right]$	0,13
ŚREDNI CZAS DZIALANIA NAPĘDÓW POMOCNICZYCH I REGULACJI KOTtA	tel [h/rok]	8760

CIEPLA WODA UZ̄YTKOWA

PARAMETRY ENERGETYCZNE			
ZAPOTRZEBOWANIE NA ENERGIĘ UŻYTKOWA BEZ URZADZEŃ POMOCNICZYCH	QW,nd	[kWh/rok]	23 227,0
ZAPOTRZEBOWANIE NA ENERGIĘ KOŃCOWA BEZ URZADZEŃ POMOCNICZYCH	QK,W	[kWh/rok]	45 932,2
ZAPOTRZEBOWANIE NA ENERGIĘ PIERWOTNA BEZ URZADZEN POMOCNICZYCH		[kWh/rok]	50 525,4
ZAPOTRZEBOWANIE NA ENERGİĘ UŻYTKOWA DO NAPĘDU URZADZEŃ POMOCNICZYCH		[kWh/rok]	1922,0
ZAPOTRZEBOWANIE NA ENERGIĘ KOŃCOWA DO NAPĘDU URZADZEN POMOCNICZYCH	Eel,pom, W	[kWh/rok]	1922,0
ZAPOTRZEBOWANIE NA ENERGĮ̇ PIERWOTNA DO NAPĘDU URZADZEN POMOCNICZYCH		[kWh/rok]	5766,1
ZAPOTRZEBOWANIE NA ENERGIĘ UŻYTKOWA		[kWh/rok]	25 149,0
ZAPOTRZEBOWANIE NA ENERGIĘ KOŃCOWA		[kWh/rok]	47854,3
ZAPOTRZEBOWANIE NA ENERGIĘ PIERWOTNA	QP,W	[kWh/rok]	56 291,6
POWIERZCHNIA O REGULOWANEJ TEMPERATURZE	Af	[m^{2}]	2303,5
POWIERZCHNIA UŻYTKOWA		$\left[\mathrm{m}^{2}\right]$	2303,5
POWIERZCHNIA UŻYTKOWA O REGULOWANEJ TEMPERATURZE		$\left[\mathrm{m}^{2}\right]$	2303,5
OPIS SYSTEMU CIEPLEJ WODY			

OPIS SYSTEMU CIEPEEJ WODY
Instalacja c.w.u. izolowanymi przewodami z cyrkulacja
SYSTEM INSTALACJI CIEPEEJ WODY

PARAMETRY ENERGETYCZNE

ZAPOTRZEBOWANIE NA ENERGIĘ UŻYTKOWA BEZ URZADZEŃ POMOCNICZYCH
QW,nd
[kWh/rok]
23 227,0

STAROSTWO POWIATOWE
w SANOKU

ZAPOTRZEBOWANIE NA ENERGIĘ KOŃCOWA BEZ URZADZEŃ POMOCNICZYCH	QK,W	[kWh/rok]	45 932,2
ZAPOTRZEBOWANIE NA ENERGIĘ PIERWOTNA BEZ URZADZEŃ POMOCNICZYCH		[$\mathrm{kWh} / \mathrm{rok}$]	50 525,4
ZAPOTRZEBOWANIE NA ENERGIĘ UŻYTKOWA DO NAPEEDU URZADZEŃ POMOCNICZYCH		[kWh/rok]	1922,0
ZAPOTRZEBOWANIE NA ENERGIĘ KOŃCOWA DO NAPĘDU URZADZEŃ POMOCNICZYCH	Eel,pom, W	[kWh/rok]	1922,0
ZAPOTRZEBOWANIE NA ENERGIĘ PIERWOTNA DO NAPĘDU URZADZEŃ POMOCNICZYCH		[kWh/rok]	5766,1
ZAPOTRZEBOWANIE NA ENERGIĘ UŻYTKOWA		[kWh/rok]	25 149,0
ZAPOTRZEBOWANIE NA ENERGIĘ KOŃCOWA		[kWh/rok]	47 854,3
zapotrzebowanie na energie pierwotna	QP, W	[kWh/rok]	56 291,6
POWIERZCHNIA O REGULOWANEJ TEMPERATURZE	Af	[m^{2}]	2303,5
POWIERZCHNIA UŻYTKOWA		$\left[\mathrm{m}^{2}\right]$	2303,5
POWIERZCHNIA UŻYTKOWA O REGULOWANEJ TEMPERATURZE		$\left[\mathrm{m}^{2}\right]$	2 303,5
NOŚNIK ENERGII KOŃCOWEJ			

PALIWA
WSPÓtCZYNNIK NAKLADU NIEODNAWIALNEJ ENERGII PIERWOTNEJ NA WYTWORZENIE I DOSTARCZENIE NOŚNIKA ENERGII LUB ENERGII DO BUDYNKU
wi
1,10 RODZAJ ŹRÓDEA CIEPŁA
Kotły niskotemperaturowe - o mocy do 50 kW

| $\begin{array}{l}\text { ŚREDNIA SEZONOWA SPRAWNOŚĆ WYTWORZENIA NOŚNIKA CIEPŁA Z ENERGII DOSTARCZONEJ DO } \\ \text { GRANICY BILANSOWEJ BUDYNKU }\end{array} \mathrm{\eta W}, \mathrm{~g}$ | 0,86 |
| :--- | :---: | :---: |

LOKALIZACJA ŹRÓDŁA CIEPLA I RODZAJ INSTALACJI
CENTRALNE PRZYGOTOWANIE - obiegi izolowane - małe instancje do 30 punktów poboru
ŚREDNIA SEZONOWA SPRAWNOŚĆ TRANSPORTU CIEPLEJ WODY W OBRĘBIE BUDYNKU $\quad \eta W, \mathrm{~d}$
0,70
PARAMETRY ZASOBNIKA CIEPEEJ WODY
Zasobnik w systemie wg standardu budynku niskoenergetycznego

ŚREDNIA SEZONOWA SPRAWNOŚĆ AKUMULACI CIEPEEJ WODY W ELEMENTACH POJEMNOŚCIOWYCH SYSTEM CIEPLEJ WODY	$\eta W, \mathrm{~s}$	
ŚREDNIA SEZONOWA SPRAWNOŚĆ WYKORZYSTANIA	$\eta W, \mathrm{e}$	0,84
ŚREDNIA SEZONOWA SPRAWNOŚĆ CAEKOWITA INSTALACJI	$\eta W, t o t, i$	1,00
URZADZENIA POMOCNICZE		0,51
POMPY CYRKULACYJNE		

POMPY CYRKULACYJNE - w budynku o AU ponad $250 \mathrm{~m}^{2}$ - praca przerywana do 4 godz./dobe

ŚREDNIA MOC JEDNOSTKOWA POMP CYRKULACYJNYCH	qel	$\left[\mathrm{W} / \mathrm{m}^{2}\right]$	0,08
ŚREDNI CZAS DZIA\&ANIA POMP CYRKULACYJYYCH	tel	$[\mathrm{h} / \mathrm{rok}]$	7300
POMPA ŁADUJACA ZASOBNIK			

POMPA ŁADUJACCA ZASOBNIK ciepłej wody - w budynku o AU ponad $250 \mathrm{~m}^{2}$

ŚREDNIA MOC JEDNOSTKOWA POMP ŁADUJACYCH ZASOBNIK	qel	$\left[\mathrm{W} / \mathrm{m}^{2}\right]$	0,15
ŚREDNI CZAS DZIAŁANIA POMP ŁADUJACYCH ZASOBNIK	tel	$[\mathrm{h} / \mathrm{rOk}]$	500
NAPED POMOCNICZY I REGULACJA KOTLA			

NAPED POMOCNICZY I REGULACJA KOTLA

NAPĘD POMOCNICZY i regulacja kotła do podgrzewu ciepłej wody - w budynku o AU ponad $250 \mathrm{~m}^{2}$

ŚREDNIA MOC JEDNOSTKOWA NAPĘDÓW POMOCNICZYCH I REGULACJI KOTŁA	qel	[W/m ${ }^{2}$]	0,35
ŚREDNI CZAS DZIAEANIA NAPĘDÓW POMOCNICZYCH I REGULACJI KOTŁA	tel	[h/rok]	375
UŻYTKOWANIE INSTALACJI			
JEDNOSTKOWE DOBOWE ZUŻYCIE C.W.U. W ZALEŻNOŚCI OD RODZAUU BUDYNKU (RODZA): BUDYNKI GASTRONOMII I UStUG)	VCW	[$\mathrm{dm}^{3} /[$ Li]doba]	30,0
LICZBA JEDNOSTEK ODNIESIENIA (JEDNOSTKA: PRACOWNIK)	Li		45
CZAS UŻřtKowania	tUZ	[doba]	365
PRZERWY URLOPOWE I WYJAZDY		[\%]	10,0
TEMPERATURA CIEPLEJ WODY W ZAWORZE CZERPALNYM	$\theta c w$	$\left[{ }^{\circ} \mathrm{C}\right]$	55,0
TEMPERATURA ZIMNEJ WODY	Өо	[${ }^{\text {C }}$]	10,0
MNOŻNIK KOREKCYJNY DLA TEMPERATURY CIEPLEJ WODY INNEJ Nİ̇ 55 oC	kt		1,00

OSWIETLENIE

PARAMETRY ENERGETYCZNE

ZAPOTRZEBOWANIE NA ENERGIĘ UŻYTKOWA QU,L [kWh/rok] 91207,2

ZAPotrZEBOWANIE NA ENERGIĘ KOŃCOWA	QK,L	$[\mathrm{kWh} / \mathrm{rok}]$	91207,2
ZAPOTRZEBOWANIE NA ENERGIĘ PIERWOTNA	QP, L	$[\mathrm{kWh} / \mathrm{rok}]$	273621,6
POWIERZCHNIA O REGULOWANEJ TEMPERATURZE	Af	$\left[\mathrm{m}^{2}\right]$	2303,5
POWIERZCHNIA UŻYTKOWA		$\left[\mathrm{m}^{2}\right]$	2303,5
POWIERZCHNIA UŻYTKOWA O REGULOWANEJ TEMPERATURZE	$\left[\mathrm{m}^{2}\right]$	2303,5	

OPIS SYSTEMU OŚWIETLENIA

SYSTEM INSTALACJI OŚWIETLENIOWEJ

PARAMETRY ENERGETYCZNE				
ZAPOTRZEBOWANIE NA ENERGIE UŻ̀TKOWA		QU,L	[kWh/rok]	91 207,2
Zapotrzebowanie na energię Koñcowa		QK,L	[kWh/rok]	91 207,2
ZAPOTRZEBOWANIE NA EnERGIĘ PIERWOTNA		QP,L	[kWh/rok]	273 621,6
POWIERZCHNIA O REGULOWANEJ TEMPERATURZE		Af	[m^{2}]	2303,5
POWIERZCHNIA UŻ̌TKOWA			[m^{2}]	2303,5
POWIERZCHNIA UŻ̇TKOWA O REGULOWANEJ TEMPERATURZE			[m^{2}]	2303,5
MOC JEDNOSTKOWA OPRAW OŚWIETLENIA (TYP BUDYNKU: HANDOLOWO-USLUGOWE - KLASA A (ST. PODSTAWOWY))		PN	[W/m ${ }^{2}$]	15,0
CZAS UŻYTKOWANIA oświetlenia (TYP BUDYNKU: BUDYNKI GASTRONOMII I USŁUG)		tD	[h/rok]	1250,0
		tN	[h/rok]	1250,0
WSPÓtCZYNNIK UWZGLEDNIAAACY NIEOBECNOŚŚ UŻYTKOWNIKÓW (TYP BUDYNKU: GASTRONOMIA I USLUGI - REGULACJA RECZNA)		FO		1,0
WSPÓtCZYNNIK UWZGLĘDNIAAACY WYKORZYSTANIE ŚWIATLA DZIENNEGO (TYP BUDYNKU: BUDYNKI GASTRONOMII I USKUG - REGULACJA RECZNA)		FD		1,0
WSPÓLCZYNNIK UTRZYMANIA POZIOMU NATEŻ̇ENIA OŚWIETLENIA (SPOSÓB REGULACJI: BRAK REGULACJI NATĖŻENIA OŚWIETLENIA)		MF		1,00
WSPÓtCZYNNIK UWZGLĘDİAACY OBNİ̇ENIE NATĘ̇̇ENIA OŚWIETLENIA DO POZİMU WYMAGANEGO		GO FC		1,00
ELEKTRYCZNOSĆ				
	$\begin{gathered} \mathrm{QU} \\ {[\mathrm{kWh} / \mathrm{rok}]} \end{gathered}$	$\begin{gathered} \mathrm{Qk} \\ {[\mathrm{kWh} / \mathrm{rok}]} \end{gathered}$	$\begin{gathered} Q P \\ {[\mathrm{kWh} / \mathrm{rok}]} \end{gathered}$	$\begin{gathered} \begin{array}{c} \text { UDZIAL } \\ {[\%]} \end{array} \end{gathered}$
URZADZENIA POMOCNICZE SYSTEMU OGRZEWANIA	19722,1	19722,1	59 166,4	17,0
URZADZENIA POMOCNICZE SYSTEMU WENTYLACJI	0,0	0,0	0,0	0,0
URZADZENIA POMOCNICZE SYSTEMU CIEPLE WODY	1922,0	1922,0	5766,1	2,0
SYSTEM OŚWIETLENIA	91 207,2	91 207,2	273 621,6	81,0
SUMA	112851,4	112851,4	338554,1	100,0
OPIS SYSTEMU ELEKTRYCZNOŚCI				

SYSTEM INSTALACJI ELEKTRYCZNE

PARAMETRY ENERGETYCZNE			
ZAPOTRZEBOWANIE NA ENERGIĘ UŻYTKOWA		[kWh/rok]	112851,4
ZAPOTRZEBOWANIE NA ENERGIĘ KOŃCOWA		[kWh/rok]	112851,4
ZAPOTRZEBOWANIE NA ENERGIĘ PIERWOTNA		[kWh/rok]	338554,1
POWIERZCHNIA O REGULOWANEJ TEMPERATURZE	Af	[m2]	2303,5
POWIERZCHNIA UŻYTKOWA		[m2]	2303,5
POWIERZCHNIA UŻYTKOWA O REGULOWANEJ TEMPERATURZE		[m2]	2303,5
NOŚNIK ENERGII KOŃCOWEJ			
ENERGIA ELEKTRYCZNA - produkcja mieszana			
WSPÓtCZYNNIK NAK\&ADU NIEODNAWIALNEJ ENERGII PIERWOTNEJ NA WYTWORZENIE I DOSTARCZENIE NOŚNIKA ENERGII LUB ENERGII DO BUDYNKU	Wi		3,00

ZESTAWIENTE NOŚNIKÓW ENERGII KOŃCOWE

NOŚNIK ENERGII KOŃCOWEJ

PALIWA - Gaz ziemny

OGRZEWANIE	QU $[\mathrm{kWh} / \mathrm{rok}]$	QK $[\mathrm{kWh} /$ rok]	QP [kWh/rok]
BEZ URZADZEN POMOCNICZYCH	264922,6	287309,2	316040,1

Charakterystyka sporządzona za pomoca programu Audytor OZC 6.1 Pro

URZADZENIA POMOCNICZE	0,0	0,0	0,0
Z URZADZENIAMI POMOCNICZYMI	264 922,6	287 309,2	316 040,1
WENTYLACJA MECHANICZNA	$\begin{gathered} \mathrm{QU} \\ {[\mathrm{kWh} / \mathrm{rok}]} \end{gathered}$	$\begin{gathered} \mathrm{QK} \\ {[\mathrm{kWh} / \mathrm{rok}\rceil} \end{gathered}$	$\begin{gathered} \mathrm{QP} \\ {[\mathrm{kWh} / \mathrm{rok}]} \end{gathered}$
BEZ URZADZEN POMOCNICZYCH	0,0	0,0	0,0
URZADZENIA POMOCNICZE	0,0	0,0	0,0
Z URZADZENIAMI POMOCNICZYMI	0,0	0,0	0,0
CIEPtA WODA UŻYTKOWA	[kWh/rok]	[kWh/rok]	$\begin{gathered} \mathrm{QP} \\ {[\mathrm{kWh} / \mathrm{rok}]} \end{gathered}$
BEZ URZADZEŃ POMOCNICZYCH	23 227,0	45932,2	50 525,4
URZADZENIA POMOCNICZE	0,0	0,0	0,0
Z URZADZENIAMI POMOCNICZYMI	23 227,0	45932,2	50 525,4
CHtOdzENIE	QU [kWh/rok]	[kWh/rok]	$\begin{gathered} \mathrm{QP} \\ {[\mathrm{kWh} / \mathrm{rok}]} \end{gathered}$
BEZ URZADZEN POMOCNICZYCH	0,0	0,0	0,0
URZADZENIA POMOCNICZE	0,0	0,0	0,0
Z URZADZENIAMI POMOCNICZYMI	0,0	0,0	0,0
OŚWIETLENIE WBUDOWANE	QU [kWh/rok]	[kWh/rok]	$[\mathrm{kWh} / \mathrm{rok}]$
BEZ URZADZEN POMOCNICZYCH	0,0	0,0	0,0
RAZEM	288 149,6	333 241,4	366 565,5
NOŚNIK ENERGII KOŃCOWE			
ENERGIA ELEKTRYCZNA - produkcja mieszana			
OGRZEWANIE	QU [kWh/rok]	[kWh/rok]	QP [kWh/rok]
BEZ URZADZEN POMOCNICZYCH	0,0	0,0	0,0
URZADZENIA POMOCNICZE	19722,1	19722,1	59166,4
Z URZADZENIAMI POMOCNICZYMI	19722,1	19722,1	59 166,4
WENTYLACJA MECHANICZNA	QU [kWh/rok]	[kWh/rok]	QP [kWh/rok]
BEZ URZADZEN POMOCNICZYCH	0,0	0,0	0,0
URZADZENIA POMOCNICZE	0,0	0,0	0,0
Z URZADZENIAMI POMOCNICZYMI	0,0	0,0	0,0
CIEPłA WODA UŻYTKOWA	QU [kWh/rok]	[kWh/rok]	$[\mathrm{kWh} / \mathrm{rok}]$
BEZ URZADZEŃ POMOCNICZYCH	0,0	0,0	0,0
URZADZENIA POMOCNICZE	1922,0	1922,0	5766,1
Z URZADZENIAMI POMOCNICZYMI	1922,0	1922,0	5766,1
CHEODZENIE	QU $[\mathrm{kWh} /$ rok]	[kWh/rok]	[kWh/rok]
BEZ URZADZEŃ POMOCNICZYCH	0,0	0,0	0,0
URZADZENIA POMOCNICZE	0,0	0,0	0,0
Z URZADZENIAMI POMOCNICZYMI	0,0	0,0	0,0
OŚWIETLENIE WBUDOWANE	QU [kWh/rok]	[kWh/rok]	$[\mathrm{kWh} / \mathrm{rok}]$
BEZ URZADZEŃ POMOCNICZYCH	91 207,2	91 207,2	273 621,6
RAZEM	21 644,2	21 644,2	64932,6
BRAK CHtODZONYCH POMIESZCZEṄ			
PODSUMOWANIE PARAMETROOW ENERGETYCZNYCH			
OGRZEWANIE I WENTYLACIA			
ZAPOTRZEBOWANIE NA ENERGIE UŻYTKOWA BEZ URZADZEŃ POMOCNICZYCH	QH,nd	[kWh/rok]	264 922,6
ZAPOTRZEBOWANIE NA ENERGIĘ KOŃCOWA BEZ URZADZEN POMOCNICZYCH	QK,H	[kWh/rok]	287 309,2
ZAPOTRZEBOWANIE NA ENERGIĘ PIERWOTNA BEZ URZADZEŃ POMOCNICZYCH		[kWh/rok]	316 040,1
ZAPOTRZEBOWANIE NA ENERGIĘ UŻYTKOWA DO NAPĘDU URZADZEŃ POMOCNICZYCH		[kWh/rok]	19722,1
ZAPOTRZEBOWANIE NA ENERGIĘ KOŃCOWA DO NAPEEDU URZADZEŃ POMOCNICZYCH	Eel,pom, H	[kWh/rok]	19722,1
ZAPOTRZEBOWANIE NA ENERGIE PIERWOTNA DO NAPĘDU URZADZEŃ POMOCNICZYCH		[kWh/rok]	59 166,4
ZAPOTRZEBOWANIE NA ENERGIĘ UŻYTKOWA WRAZ Z URZADZENIAMI POMOCNICZYMI		[kWh/rok]	284 644,8
Charakterystyka sporzadzona za pomoca programu Audytor OzC 6.1 Pro strona 5			

ZAPOTRZEBOWANIE NA ENERGIĘ KOŃCOWA WRAZ Z URZADZENIAMI POMOCNICZYMI		[kWh/rok]	307 031,3
ZAPOTRZEBOWANIE NA ENERGIĘ PIERWOTNA WRAZ Z URZADZENIAMI POMOCNICZYMI	QP,H	[kWh/rok]	375 206,5
JEDNOSTKOWE ZAPOTRZEBOWANIE NA ENERGIĘ UŻYTKOWA BEZ URZADZEN POMOCNICZYCH		[kWh/m²rok]	108,5
JEDNOSTKOWE ZAPOTRZEBOWANIE NA ENERGĮ̇ KOŃCOWA BEZ URZADZEṄ POMOCNICZYCH		[kWh/m²rok]	117,7
Jednostkowe zapotrzebowanie na energię pierwotna bez urzadzen pomocniczych		[kWh/m²rok]	129,5
JEDNOSTKOWE ZAPOTRZEBOWANIE NA ENERGIĘ UŻYTKOWA DO NAPĘDU URZADZEN POMOCNICZYCH		[kWh/m²rok]	8,1
JEDNOSTKOWE ZAPOTRZEBOWANIE NA ENERGIĘ KONCOWA DO NAPĘDU URZADZEN POMOCNICZYCH		[kWh/m²rok]	8,1
JEDNOSTKOWE ZAPOTRZEBOWANIE NA ENERGIĘ PIERWOTNA DO NAPĘDU URZADZEŃ POMOCNICZYCH		[kWh/m²rok]	24,2
JEDNOSTKOWE ZAPOTRZEBOWANIE NA ENERGIĘ UŻYTKOWA WRAZ Z URZADZENIAMI POMOCNICZYMI	EUH	[kWh/m²rok]	116,6
JEDNOSTKOWE ZAPOTRZEBOWANIE NA ENERGIĘ KONCOWA WRAZ Z URZADZENIAMI POMOCNICZYMI	EKH	[kWh/m²rok]	125,8
JEDNOSTKOWE ZAPOTRZEBOWANIE NA ENERGIE PIERWOTNA WRAZ Z URZADZENIAMI POMOCNICZYMI	EPH	[kWh/m²rok]	153,7
WENTYLACJA MECHANICZNA			
ZAPOTRZEBOWANIE NA ENERGIE UŻYTKOWA BEZ URZADZEN POMOCNICZYCH	QV,nd	[kWh/rok]	0,0
ZAPOTRZEBOWANIE NA ENERGĮ̇ KOŃCOWA BEZ URZADZEN POMOCNICZYCH	QK,V	[kWh/rok]	0,0
ZAPOTRZEBOWANIE NA ENERGIĘ PIERWOTNA BEZ URZADZEN POMOCNICZYCH		[kWh/rok]	0,0
ZAPOTRZEBOWANIE NA ENERGIĘ UŻYTKOWA DO NAPȨ̇DU URZADZEŃ POMOCNICZYCH		[kWh/rok]	0,0
ZAPOTRZEBOWANIE NA ENERGIĘ KOŃCOWA DO NAPĘDU URZADZEŃ POMOCNICZYCH	Eel,pom,V	[kWh/rok]	0,0
ZAPOTRZEBOWANIE NA ENERGIĘ PIERWOTNA DO NAPĘDU URZADZEN POMOCNICZYCH		[kWh/rok]	0,0
ZAPOTRZEBOWANIE NA ENERGIĘ UŻYTKOWA WRAZ Z URZADZENIAMI POMOCNICZYMI		[kWh/rok]	0,0
ZAPOTRZEBOWANIE NA ENERGIĘ KOŃCOWA WRAZ Z URZADZENIAMI POMOCNICZYMI		[kWh/rok]	0,0
ZAPOTRZEBOWANIE NA ENERGIĘ PIERWOTNA WRAZ Z URZADZENIAMI POMOCNICZYMI	QP,V	[kWh/rok]	0,0
JEDNOSTKOWE ZAPOTRZEBOWANIE NA ENERGĮ̇ UŻYTKOWA BEZ URZADZEŃ POMOCNICZYCH		[kWh/m²rok]	0,0
JEDNOSTKOWE ZAPOTRZEBOWANIE NA ENERGIĘ KOŃCOWA BEZ URZADZEN POMOCNICZYCH		[kWh/ m²rok]	0,0
JEDNOSTKOWE ZAPOTRZEBOWANIE NA ENERGIĘ PIERWOTNA BEZ URZADZEN POMOCNICZYCH		[kWh/ m²rok]	0,0
Jednostkowe zapotrzebowanie na energię użytkowa do napędu urzadzen pomocniczych		[kWh/ m²rok]	0,0
JEDNOSTKOWE ZAPOTRZEBOWANIE NA ENERGIĘ KOŃCOWA DO NAPĘDU URZADZEŃ POMOCNICZYCH		[kWh/ m²rok]	0,0
JEDNOSTKOWE ZAPOTRZEBOWANIE NA ENERGIĘ PIERWOTNA DO NAPĘDU URZADZEN POMOCNICZYCH		[kWh/ m²rok]	0,0
JEDNOSTKOWE ZAPOTRZEBOWANIE NA ENERGIĘ UŻYTKOWA WRAZ Z URZADZENIAMI POMOCNICZYMI	EUV	[kWh/ m²rok]	0,0
JEDNOSTKOWE ZAPOTRZEBOWANIE NA ENERGIĘ KOŃCOWA WRAZ Z URZADZENIAMI POMOCNICZYMI	EKV	[kWh/ m²rok]	0,0
JEDNOSTKOWE ZAPOTRZEBOWANIE NA ENERGIĘ PIERWOTNA WRAZ Z URZADZENIAMI POMOCNICZYMI	EPV	[$\left.\mathrm{kWh} / \mathrm{m}^{2} \mathrm{rok}\right]$	0,0
CIEPLA WODA UŻYTKOWA			
ZAPOTRZEBOWANIE NA ENERGIĘ UŻYTKOWA BEZ URZADZEN POMOCNICZYCH	QW,nd	[kWh/rok]	23 227,0
ZAPOTRZEBOWANIE NA ENERGIĘ KOŃCOWA BEZ URZADZEN POMOCNICZYCH	QK, W	[kWh/rok]	45932,2
ZAPOTRZEBOWANIE NA ENERGIĘ PIERWOTNA BEZ URZADZEN POMOCNICZYCH		[kWh/rok]	50 525,4
ZAPOTRZEBOWANIE NA ENERGIĘ UŻYTKOWA DO NAPĘDU URZADZEŃ POMOCNICZYCH		[kWh/rok]	1922,0
ZAPOTRZEBOWANIE NA ENERGIĘ KOŃCOWA DO NAPĘDU URZADZEN POMOCNICZYCH	Eel,pom,W	[kWh/rok]	1922,0
ZAPOTRZEBOWANIE NA ENERGIĘ PIERWOTNA DO NAPĘDU URZADZEN POMOCNICZYCH		[kWh/rok]	5766,1
ZAPOTRZEBOWANIE NA ENERGIĘ UŻンTKOWA WRAZ Z URZADZENIAMI POMOCNICZYMI		[kWh/rok]	25 149,0
ZAPOTRZEBOWANIE NA ENERGIĘ KOŃCOWA WRAZ Z URZADZENIAMI POMOCNICZYMI		[kWh/rok]	47854,3
ZAPOTRZEBOWANIE NA ENERGIĘ PIERWOTNA WRAZ Z URZADZENIAMI POMOCNICZYMI	QP,W	[kWh/rok]	56 291,6
JEDNOSTKOWE ZAPOTRZEBOWANIE NA ENERGIĘ UŻYTKOWA BEZ URZADZEN POMOCNICZYCH		[$\mathrm{kWh} / \mathrm{m}^{2} \mathrm{rok}$]	9,5
JEDNOSTKOWE ZAPOTRZEBOWANIE NA ENERGIĘ KOŃCOWA BEZ URZADZEŃ POMOCNICZYCH		[kWh/m²rok]	18,8
JEDNOSTKOWE ZAPOTRZEBOWANIE NA ENERGIĘ PIERWOTNA BEZ URZADZEN POMOCNICZYCH		[kWh/mrok]	20,7
JEDNOSTKOWE ZAPOTRZEBOWANIE NA ENERGIĘ UŻฯTKOWA DO NAPĘDU URZADZEṄ POMOCNICZYCH		[kWh/m²rok]	0,8
JEDNOSTKOWE ZAPOTRZEBOWANIE NA ENERGĮ̇ KOŃCOWA DO NAPĘDU URZADZEN POMOCNICZYCH		[$\mathrm{kWh} / \mathrm{m}^{2}$ rok]	0,8
Jednostkowe zapotrzebowanie na energie pierwotna do napęou urzadzen pomocniczych		[$\mathrm{kWh} / \mathrm{m}^{2}$ rok]	2,4
JEDNOSTKOWE ZAPOTRZEBOWANIE NA ENERGIĘ UŻYTKOWA WRAZ Z URZADZENIAMI POMOCNICZYMI	EUW	[$\mathrm{kWh} / \mathrm{m}^{2}$ rok]	10,3
Jednostkowe zapotrzebowanie na energię końcowa wraz z urzadzeniami pomocniczimi	EKW	[kWh/m²rok]	19,6
Charakterystyka sporzadzona za pomoca programu Audytor OZC 6.1 Pro			

CHRODZENE

BRAK CHŁODZONYCH POMIESZCZEN			
OSWIELENIE			
ZAPOTRZEBOWANIE NA ENERGIĘ UŻYTKOWA		[kWh/rok]	91207,2
ZAPOTRZEBOWANIE NA ENERGIĘ KOŃCOWA		[kWh/rok]	91 207,2
ZAPOTRZEBOWANIE NA ENERGIĘ PIERWOTNA	QP,L	[kWh/rok]	273621,6
JEDNOSTKOWE ZAPOTRZEBOWANIE NA ENERGIĘ UŻYTKOWA	EUL	[kWh/m²rok]	37,4
JEDNOSTKOWE ZAPOTRZEBOWANIE NA ENERGIĘ KONCOWA	EKL	[kWh/m ${ }^{2}$ rok]	37,4
JEDNOSTKOWE ZAPOTRZEBOWANIE NA ENERGIĘ PIERWOTNA	EPL	[kWh/m ${ }^{2}$ rok]	112,1
\&ACZNIE DIA BUDYNKU			
ZAPOTRZEBOWANIE NA ENERGIĘ UŻYTKOWA BEZ URZADZEN POMOCNICZYCH	Qnd	[kWh/rok]	379 356,8
ZAPOTRZEBOWANIE NA ENERGIĘ KONCOWA BEZ URZADZEN POMOCNICZYCH	QK	[kWh/rok]	424 448,6
ZAPOTRZEBOWANIE NA ENERGIĘ PIERWOTNA BEZ URZADZEN POMOCNICZYCH		[kWh/rok]	640187,1
ZAPOTRZEBOWANIE NA ENERGIĘ UŻYTKOWĄ DO NAPĘDU URZĄDZEN POMOCNICZYCH		[kWh/rok]	21 644,2
ZAPOTRZEBOWANIE NA ENERGIĘ KOŃCOWA DO NAPĘDU URZADZEN POMOCNICZYCH	Eel,pom	[kWh/rok]	21 644,2
ZAPOTRZEBOWANIE NA ENERGIĘ PIERWOTNA DO NAPĘDU URZADZEN POMOCNICZYCH		[kWh/rok]	64932,6
ZAPOTRZEBOWANIE NA ENERGIĘ UŻYTKOWA WRAZ Z URZADZENIAMI POMOCNICZYMI		[kWh/rok]	401001,0
ZAPOTRZEBOWANIE NA ENERGIĘ KOŃCOWA WRAZ Z URZĄDZENIAMI POMOCNICZYMI		[kWh/rok]	446092,8
ZAPOTRZEBOWANIE NA ENERGIĘ PIERWOTNA WRAZ Z URZADZZENIAMI POMOCNICZYMI	QP	[kWh/rok]	705119,6
JEDNOSTKOWE ZAPOTRZEBOWANIE NA ENERGIĘ UŻYTKOWA BEZ URZĄZEN POMOCNICZYCH		[kWh/m²rok]	155,4
JEDNOSTKOWE ZAPOTRZEBOWANIE NA ENERGIĘ KOŃCOWA BEZ URZADZEŃ POMOCNICZYCH		[kWh/m²rok]	173,9
JEDNOSTKOWE ZAPOTRZEBOWANIE NA ENERGIĘ PIERWOTNA BEZ URZADZEN POMOCNICZYCH		[kWh/m²rok]	262,3
JEDNOSTKOWE ZAPOTRZEBOWANIE NA ENERGIĘ UŻYTKOWA DO NAPĘDU URZADZEN POMOCNICZYCH		[kWh/m²rok]	8,9
JEDNOSTKOWE ZAPOTRZEBOWANIE NA ENERGIĘ KOŃCOWA DO NAPĘDU URZADZEŃ POMOCNICZYCH		[kWh/m²rok]	0,8
JEDNOSTKOWE ZAPOTRZEBOWANIE NA ENERGIĘ PIERWOTNĄ DO NAPĘDU URZADZEŃ POMOCNICZYCH		[kWh/m²rok]	26,6
ZAPOTRZEBOWANIE NA ENERGIE			
JEDNOSTKOWE ZAPOTRZEBOWANIE NA ENERGIĘ UŻYTKOWA WRAZ Z URZADZENIAMI POMOCNICZYMI	EU	[kWh/m²rok]	164,3
JEDNOSTKOWE ZAPOTRZEBOWANIE NA ENERGIĘ KOŃCOWA WRAZ Z URZADZENIAMI POMOCNICZYMI	EK	[kWh/m²rok]	182,8
JEDNOSTKOWE ZAPOTRZEBOWANIE NA ENERGIĘ PIERWOTNA WRAZ Z URZĄDZENIAMI POMOCNICZYMI	EP	[kWh/m²rok]	288,9
JEDNOSTKOWE GRANICZNE ZAPOTRZEBOWANIE NA ENERGIĘ PIERWOTNA DLA BUDYNKU WG WT 2021	EPWT 2021	[kWh/m ${ }^{2}$ rok]	95,0
SPRAWDZENIE SPELEIENHA WYMAGAN WARUNKOW TECHNICZNYCH WT 2021	BUDYNKU IS	UIEACEGO	

SPRAWDZNIE SPEENIENIA WYMAGAN WARUNKOW TECHNICZNYCH WT 2021 DLA BUDYNKU ISTNIEAACEGO
WARUNEK WSKaŹnika EP
WARUNEK WSPÓtCZYNNIKÓW U PRZEGRÓD
SPEENIONY ${ }^{3}$
BUDYNEK SPEENIA WYMAGANIA WT 2021 w powyższym zakresie ${ }^{1}$
1 Zgodnie z Rozporzadzeniem MTBiGM z dn. 5 lipca 2013 r., zmieniajacym rozporzadzenie w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie (§ 328):

Budynek nowo wznoszony powinien być zaprojektowany m.in. tak, aby wartość wskaźnika EP była mniejsza od wartości granicznej oraz przegrody zewnętrzne odpowiadały wymaganiom izolacyjności cieplnej.

Dodatkowo w Rozporządzeniu podane sa wymagania dotyczące wyposażenia technicznego budynku oraz powierzchni okien (te warunki nie są sprawdzane przez program).

2 W przypadku budynku podlegajacego przebudowie, spełnienie warunku EP nie jest wymagane.

3 W przypadku budynku podlegającego przebudowie, wymagania izolacyjności muszą spełnić jedynie przegrody podlegajace przebudowie.

Mieczys aw Fil
Uprawnienia D A-649-132/82 WSpecial nosci Tisstalacyino-inzynleryjne] w Zad resto Siecih Instalacii Sanitarnych 38-5 1 S Sande, ULP Preeforowa 10, (el. 134631526

Informacja dotycząca bezpieczeństwa i ochrony zdrowia

(na podstawie rozporządzenia Ministra Infrastruktury z dnia 23 czerwca 2003 r)

1. Informacje ogólne

1.1. Przebudowa, rozbudowa i nadbudowa budynku, Domu Kultury.
1.2. Adres inwestycji: Nowosielce - działki nr 1000, 1001 i 1688.
1.3. Inwestor: Gmina Zarszyn, ul. Bieszczadzka 74

$$
38-530 \quad \text { Zarszyn }
$$

2. Część opisowa

2.1. Zakres robot dla całego zamierzenia budowlanego:

- przebudowa stropu nad piętrem.
- rozbudowa budynku
- nadbudowa budynku - poddasza
- przebudowa więźby dachowej
- wbudowanie klatki schodowej
- wykonywanie robót izolacji przeciwwilgociowej stropu
- wykonanie izolacji termicznej ścian zewnętrznych
- wbudowanie drzwi wewnętrznych .
- wykonanie izolacji i posadzki na poddaszu
- wykonanie robót ścian działowych na poddaszu
- wykonanie robót wykończeniowych.

3. Zagrożenia dla bezpieczeństwa i zdrowia ludzi uczestniczących w procesie budowy:
3.1. Prowadzenie prac na wysokości powżej $\mathbf{5 , 0} \mathbf{m}$ (prace związane z montażem więźby dachowej wraz z pokryciem, robotami instalacyjnymi, wykonywanie robót budowlano - instalacyjnych.

- niebezpieczeństwo upadku podczas demontażu więźby dachowej.
- niebezpieczeństwo upadku podczas montażu elementów więźby.
- niebezpieczeństwo upadku podczas wykonywania deskowania
- niebezpieczeństwo wynikające z upuszczenia narzędzia lub materiału.
- Składowanie materiałów i urządzeń do montażu winne być w wyznaczonym miejscu nie powodując kolizji z stanowiskiem robót.

4. Instruktaż pracowników przed przystąpieniem do realizacji robót niebezpiecznych.
4.1. wykonywanie : wszyscy pracownicy powinni być zapoznani z przepisami zawartymi w Rozporządzeniu Ministra Infrastruktury z dnia 6 lutego 2003 r w sprawie BHP przy wykonywaniu robot budowlanych: Dz. U. Nr 47, poz. 401 rozdział 8 - Rusztowania i ruchome podesty robocze, rozdział 9 Roboty w wykopach głębokich.
4.2. wykonywanie nowych elementów instalacyjnych: wszyscy pracownicy powinni być zapoznani z przepisami zawartymi w Rozporządzeniu Ministra Infrastruktury z dnia 6 lutego 2003 r w sprawie BHP przy wykonywaniu robot budowlanych: Dz. U. Nr 47, poz. 401, rozdział 9 - Roboty przy wykopach ziemnych, rozdział 13 - Roboty ciesielskie, rozdział 17 - Roboty instalacyjne i izolacyjne.
5. Wykaz środków technicznych i organizacyjnych zapobiegających niebezpieczeństwom wynikającym z wykonywania robót budowlanych.
5.1 Na pomieszczeniu socjalnym umieścić wykaz zawierający adresy i numery telefonów:

- najbliższego punktu lekarskiego
- straży pożarnej
- posterunku Policji
5.2 W pomieszczeniu socjalnym umieścić punkty pierwszej pomocy obsługiwane przez przeszkolonego w tym zakresie pracownika,
5.3 W pomieszczeniu socjalnym umieścić telefon komórkowy,
5.4 Barierki wykonane z desek krawężnikowych o szerokości 15 cm , poręczy umieszczonych na wysokości $1,1 \mathrm{~m}$ oraz deskowania ażurowego pomiędzy poręczą a deską krawężnikową
5.5 Wyznaczyć na terenie budowy za pomocą tablic drogę ewakuacyjną.

Informacje dotyczącą planu bezpieczeństwa i ochrony zdrowia sporządzono w oparciu 0 art. 20 punkt 1 a oraz art. 21 punkt 1 a ust. 2 .

पświadczenie projektantów

datyczące kompletności i zgodność z przepisami apracowanego projektu budowlanego.

Nazwa obiektu:	- Przebudowa, rozbudowa, nadbudowa budynku Dam Kultury
Rodzaj apracowania:	- Projekt budowlany
Lokalizacja:	- dziakki nr 1000, 10 Cl , 1688.
Obreb ewidencyiny:	- Nowosielce [Nr . Oflu4]
Inwestar:	Gmina Zarszyn
Adres:	ul. Bieszczadzka 74 38-530 Zarszyn

Zgodnie z Ustawą Prawo Budowlane, Dziennik Ustaw 2010 nr 243, poz. 1623 z późniejszymi zmianami, oświadczamy że projekt budowlany dla inwestycji pod nazwą: Przebudawa, rozbudowa, nadbudowa budynku - Dom Kultury w miejscawaści NOWOSIELCE, z lokalizacją na dziakach nr IOCD, IOCl, I688 jest kompletny i sporządzony projekt budowlany zgodnie z obowiązującymi przepisami oraz z zasadami wiedzy technicznej.

Branża

Architektura.

Sanitarna c. o. mgr inż. TOMMASZ QRŁOWSKI aprawnienia 6ud. bez pgraniqzeń projekt. wykonaw. w sped instplacyinej - sanitarnel nr upr. PDK/0189/PWOS/15 nr człońk. PDK/IS/0011/16

Projektant

0600644306 Miectysfaw Fil Uprawnign of actaino-intynieryinel W spe falnce ieci i Instalacji Sanitarnych 38 -sim1s.s ${ }^{2}$.

Sprawdzający

inż. Tadeusz Koprowski

$T+1346 \times 2 \mathrm{x}-\mathrm{N}+1346 \times 21+9$
Upr. Nr UAN-2-83A6. 7 mgr inż. Grzeforz Kosturski

 Mieczystaw TY
Uprawnjenia / A-649-132/82 w speciałmos tivnưolacyingłinżynieryjne w Zakresle siscio instalaçi Sanitarnych $38-50 \mathrm{C}$ sonk wid inelotern 16, tal. 134631526
mgr inż. TOMA'SZ ORtOWSKI
uprawnienia bud. bez ograniazeń projekt. wykonaw. w spec. instdlacyinej - shnitarnej nr upr. PDK/O189/RWOS/15 nr członk. PDK/IS/0011/16

Nazwa obiektu: PRZEBUDOWA, ROZBUDOWA i NADBUDOWA DOMU KULTURY.

Adres obiektu:	Nowosielce
Jednostka ewidencyjna:	Sanok - G

Obręb ewidencyjny: [Nr. 0004] Nowosielce
Numer dzialki: \quad 1000, 1001, 1688.
Nazwa opracowania:. Projekt architektoniczno-budowlany
Inwestor: Gmina Zarszyn
ul. Bieszczadzka 74
Adres inwestora:
38-530 Zarszyn

Nazwa Jednostki Projektowania:
Zakład Projektowania i Uslug Inwestycyjnych ul. Przelotowa 10, 38-500 SANOK

Opis techniczny

do projektu architektoniczno-budowlanego budynku - Dom Kultury.
Rodzaj opracowania: Projekt budowlany
Nazwa opracowania: Przebudowa, rozbudowa i nadbudowa Budynku - Domu Kultury.

Inwestor: Gmina Zarszyn
ul. Bieszczadzka 74
38-530 Zarszyn
Nazwa obiektu: Dom Kultury.
Lokalizacja: Nowosielce.
Działki nr: 1000, 1001, 1688.
Obręb. [0004] Nowosielce.

1. Cześć ogólna

1.1 Program funkcjonalno - użytkowy - stan istniejacy

Budynek - Dom Kultury, wolnostojący, dwukondygnacyjny częściowo podpiwniczony z dachem wielospadowym.
Użytkowany obiekt przez:

- Ośrodek Zdrowia.
- Placówka Banku
- Sala widowiskowa
- zaplecze socjalne
- zaplecze dla potrzeb Sali widowiskowej
- czytelnia
- garaże OSP
- pomieszczenie biurowe dla O S P.
- pomieszczenia socjalne.

2. Przedmiot opracowania;

Przedmiotem niniejszego opracowania jest przebudowa, rozbudowa i nadbudowa budynku Domu Kultury zgodnie z decyzją o ustaleniu lokalizacji inwestycji celu publicznego zlokalizowanego na działkach o nr ewidencyjnych 1000, 1001 i 1688, obręb Nowosielce, z dnia 27.02. 2017r znak: GKP. 6733. 1. 2017.ML, wydaną przez Wójta Gminy Zarszyn.

2.2 Zestawienie danych technicznych.

2.3 Zestawienie projektowanych pomieszczeń przedstawione na rzutach rysunków architektonicznych.

2.4. Technologia wykonawstwa

Metoda wykonawstwa tradycyjna, z zastosowaniem ścian murowanych z pustaków betonu komórkowego / siporeks / grubości 24 cm i 30 cm . Stropy - żelbetowe krzyżowo zbrojone nad pomieszczeniami zlokalizowanymi na poddaszu o konstrukcji drewnianej prefabrykowanej Więżba dachowa o konstrukcji drewnianej.

3. Opis architektoniczno - budowlany

3.1. Fundamenty.

- ławy fundamentowe - żelbetowe wylewane na budowie.
3.2. Ściany fundamentowe.
- beton gr. 25 cm i 30 cm -betowe wylewane na budowie.

3.3. Ściany nośne zewnętrzne.

- pustak [siporeks] betonu komórkowego 24 cm i 30 cm .
3.4. Ściany nośne wewnętrzne:
- do poziomu parteru - beton gr. 25 cm i 30 cm , wyżej pustak siporeks 24 cm i 30 cm .
3.5. Stropy: żelbetowe krzyżowo-zbrojone wylewane na budowie.
3.6. Schody - konstrukcja płytowo - belkowa żelbetowa wylewana na budowie.
3.7. Nadproża: prefabrykowane typu „L", lub Kleina.
3.8. Więžba dachowa: drewniana, płatwiowo-kleszczowa.

Abstract

3.9. W części objętej przebudową, rozbudową i nadbudową budynku ściany zewnętrzne i wewnętrzne konstrukcyjne zaprojektowano z 24 cm i 30 cm bloczków betonu komórkowego układany na kleju z warstwą ocieplającą gr. 15 cm ze styropianu grafitowego. W ścianach kolankowych usytuować rdzenie żelbetowe $25 \times 25 \mathrm{~cm}$ zbrojone $4 \varnothing 12$ mm co około $3,0 \mathrm{~m}$. Rdzenie betonować pomiędzy stropem nad I-szym piętrem a wieńcem ścianki kolankowej pod murłatą. Murłaty kotwić do wieńca kotwami $\varnothing 16 \mathrm{~mm}$ w rozstawie, maksymalnie co $2,0 \mathrm{~m}$. W ścianach szczytowych usytuować rdzenie żelbetowe co około 3,0 m zakończone wieńcem W . - Ścianki działowe gr. 12 cm zaprojektowane z podwójnej metalowej konstrukcji nośnej wypełnionej wełną mineralną, izolacją przeciwwilgociową i okładzinami z płyt gipsowo kartonowych gr. 1,25 cm

3.10. Strop istniejacy nad parterem.

Strop nad /pomieszczeniem parteru/ salą widowiskową istniejący strop objęty jest projektowaniem jego przebudowy polegającej na wbudowaniu belek wzmacniających: HEB 120, HEB 160, HEB 200, HEB 240 i dwuteownik 140.
3.11. Strop poddasza.

W pomieszczeniach zlokalizowanych na poddaszu, projektowana konstrukcja stropu z elementów drewnianych w połączeniu z więžbą dachową budynku. Rozwiązanie architektoniczne stropu drewnianego nad pomieszczeniami poddasza to:

- płyta OSB gr. 2,2 cm wbudowana ażurowo.
- kontrłaty $4 \times 5 \mathrm{~cm}$.
- folia paroprzepuszczalna.
- nadbitki belek drewnianych / kleszcze / - gr. 10 cm.
- wełna mineralna 30 cm.
- folia paroszczelna, płyty gipsowo - kartonowe. 12,5 m,
- kleszcze o wymiarach $2 \times 9 / 20 \mathrm{~cm}$, połączone z krokwiami,
płatwą i słupami.

3.12. Wieńce

Po rozbiórce więźby dachowej na istniejącym stropie wykonać wieniec W1 i zakotwić go do wieńca stropu prętami $\varnothing 16 \mathrm{~mm}$ co 25 cm . Na zwieńczeniu ścianki kolankowej, wykonać wieniec W1 dookoła budynku, połączenie między wieńcami wykonać poprzez rdzenie żelbetowe o wymiarach i zbrojeniu jak dla wieńca W1 w rozstawie średnio co 3,0 m.

3.13. Stolarka okienna i drzwiowa

Okna typowe plastikowe [z tworzyw sztucznych] o współczynniku
przenikania ciepła nie mniejszym jak $U{ }_{[\max]} 1,1$ [W /m2 K / z wbudowanymi nawietrzakami - wentylacja nawiewna. Drzwi do łazienki z kratkami wentylacyjnymi nawiewnymi.

3.14. Więźba dachowa.

Więźba dachowa o konstrukcji drewnianej, płatwiowo - kleszczowa o kątach nachylenia połaci 35°, drewno: C30.

- krokiew 9/20 cm.
- płatew 16/20 cm.
- podwalina C160 długości 1,2 m pod każdym słupkiem.
- murłata $14 / 14 \mathrm{~cm}$.
- słupek $14 / 14 \mathrm{~cm}, 16 / 16 \mathrm{~cm}$.
- miecz $\quad 9 / 20 \mathrm{~cm}$.
- kleszcze $2 \times 9 / 20 \mathrm{~cm}$.
- krokiew koszowa $16 / 20 \mathrm{~cm}$.
- belka podsufitowa $9 / 20 \mathrm{~cm}$.

Drewno zabezpieczyć przed agresja chemiczna i biologiczna oraz impregnować środkami ognioochronnymi
do granic trudnozapalnośći tj.
nierozprzestrzeniania ognia. Murłaty mocować śrubami ø 16 mm zakotwionymi w wieńcu żelbetowym na ściance kolankowej.

3.15. Izolacje

Izolacja przeciwwilgociowa:

- paroprzepuszczalna - $1 \times$ folia
- paroizolacyjna $\quad-1 \times$ folia.

Izolacja termiczna

- ściany, wieńce i nadproża - ocieplone styropianem grafitowym gr. 15 cm,
- strop nad poddaszem - wełna mineralna grubości - 30 cm .
- przestrzeń między krokwiami - wełna mineralna - 30 cm .

Izolacja akustyczna

- strop nad piętrem- styrodur grubości - 3 cm

3.16. Wentylacja grawitacyina

Wentylacja wywiewna:

- dla pomieszczeń na poddaszu - kanały wywiewne systemowe dobudować do istniejącego

3.17. Wykończenie wewnetrzne

Tynki:

- ściany murowane - tynk gipsowy kat. III
- strop drewniany - płyty kartonowo - gipsowe.
- ściany działowe - płyty kartonowo - gipsowe na systemowej konstrukcji stalowej lub bloczki betonu komórkowego.
Podłogi i posadzki:
- łazienki i kuchnie, pomieszczenia gospodarcze - posadzka z płytek terakota
- pokoje - klepki drewniane lub panele podłogowe drewniane.

Okładziny:

- ściany łazienki - glazura
- sufity pochyłe na poddaszu - płyty gipsowo - kartonowej i mocowane do systemowej konstrukcji stalowej która mocowana do więźby dachowej.

Parapety:

- wewnętrzne - marmur sztuczny.
- zewnętrzne - z blachy rodzaju, kolorze analogicznej jak projektowana blacha pokryciowa.

Malowanie

- ściany wewnętrzne i sufity - farbami ekologicznymi
3.18. Wykończenie zewnetrzne po wykonaniu przebudowy.

Tynki i okładziny

- cokół - tynk elewacyjny przyklejony do podloża.
- ściany - tynk strukturalny, cienkowarstwowy o kolorze - piasek pustyni.

Pokrycie dachu

- blacha płaska w kolorze - grafit.
- Okapy dachu podbić listwami prefabrykowanymi w osłonie plastikowej łączonymi na pióro - wpust.

Obróbki blacharskie

- blacha stalowa powlekana w kolorze pokrycia dachu,

Malowanie

- elementy drewniane przed wbudowaniem zaimpregnować środkiem owadobójczym oraz preparatami ognioochronnymi i grzybobójczymi.

4.Opinia do projektowanej przebudowy, rozbudowy i nadbudowy budynku.

4.1. Projektowana przebudowa rozbudowa i
nadbudowa istniejącego budynku - Domu Kultury, spowoduje zwiększenie powierzchni użytkowej, a za tym rozszerzy zakres rzeczowy i funkcję, podwyższy walory użytkowe, wizualne i eksploatacyjne budynku objętego niniejszym opracowaniem.

Projektant:

Opis techniczny

na okoliczność uzgodnienia projektu budowlanego pod względem ochrony przeciwpożarowego projektowanej przebudowy, rozbudowy i nadbudowy budynku Domu Kultury w Nowosielcach.

1. Podstawa opracowania.

- decyzja Wójta Gminy Zarszyn ustalająca warunki zabudowy i
zagospodarowania na działkach $1000,1001,1688$, Obręb: 0004, Nowosielce.

2. Inwestor:

Gmina Zarszyn
ul. Bieszczadzka 74, 38-530 Zarszyn
3. Funkcja budynku i parametry techniczne.

- usługowa, rekreacyjna, opieki zdrowotnej.
- powierzchnia zabudowy
- powierzchnia użytkowa
- wysokość budynku do stropu poddasza
- wysokość budynku do kalenicy
- kubatura
- 943,54 m ${ }^{2}$
$-2303,50 \mathrm{~m}^{2}$
- $9,90 \mathrm{~m}$
- $12,77 \mathrm{~m}$
- $9370,00 \mathrm{~m}^{3}$

4. Lokalizacja budynku.

Obręb: Nr. 0004, Nowosielce.
5. Opis ogólny budynku.
5.1.Ściany zewnętrzne budynku wykonane z: bloczków betonu komórkowego i cegły sylikatowej. Termomodernizacja ścian zewnętrznych polegająca na dociepleniu styropianem grafitowym grubości 15 cm . Strop o konstrukcji betonowej i ceramicznej. Więžba dachowa konstrukcji drewnianej z pokryciem blachą płaską łączoną na zamek.
5.2. W pomieszczeniach parteru zlokalizowane są: sala widowiskowa, sala wystawowa ekspozycji, część przechodni zdrowia i placówka banku oraz garaż OSP. Na piętrze funkcjonować będzie: przychodnia zdrowia, sala zajęć tanecznych z zapleczem i antresola sali widowiskowej, zaś na poddaszu przewidziano: bibliotekę, pracownie artystyczne, izbę pamięci, salę konferencyjną, pomieszczenia spotkań lokalnych grup działania.
6. Opis ogólny budynku - projektowany.
6.1. przebudowa ścian wewnętrznych i zewnętrznych.
6.2. rozbudowa budynku.
6.3. nadbudowa budynku.
7. Bezpieczeństwo pożarowe.
7.1. Budynek zaliczony jest do kategorii zagrożenia ludzi - ZL I + ZL III.
7.2. Odporność pożarowa budynku.
7.3. Klasa odporności pożarowej ,, B ,,

- budynek do trzech kondygnacji nadziemnych (parter, piętro i poddasze) z częściowym podpiwniczeniem
- budynek , N , niski
- kategoria ZLI + ZLIII.
7.4. Klasa odporności ogniowej elementów budynku.
- główna konstrukcja nośna R120.
- konstrukcja dachu R30.
- strop
- ściana zewnętrzna

REI 60.
EI 60
EI 30

- przykrycie dachu RE30
- Właz strychowy z poddasza na strych EI 15.

Pomieszczenia poddasza oddzielone będą od palnej więźby i przekrycia dachu przegrodami o klasie odporności ogniowej EI 30.

7.5. Odległość od obiektów sąsiadujących

Budynek jest wolnostojący. Istniejąca jak i projektowana część budynku znajduje się w odległości powyżej 25 m od innych budynków na działkach sąsiednich.

7.6. Podzial obiektu na strefy pożarowe

Dopuszczalna powierzchnia strefy pożarowej w budynku wielokondygnacyjnym niskim,, N, , $\mathbf{8 0 0 0} \mathrm{m}^{2}$. Powierzchnia użytkowa w budynku projektowana po rozbudowie, przebudowie, nadbudowie wynosi $2303,50 \mathrm{~m}^{2}$. W budynku wydzielono 2 strefy pożarowe: PM (garaż OSP na parterze) oraz ZL I+III pozostała część budynku. Niezależnie od tego oddzielona pożarowo (stropem REI60) jest kondygnacja piwnicy, która nie posiada połączenia komunikacyjnego z parterem - ma wejście tylko z zewnątrz. Przewidziano również wydzielenie pożarowe kotłowni (elementami klasy REI60) i zamknięcie jej drzwiami klasy EI 30.
7.7. Maksymalna gęstość obciążenia ogniowego strefy pożarowej PM oraz pomieszczeń techniczno-magazynowych $\mathrm{Q} \leq 500 \mathrm{MJ} / \mathrm{m}^{2}$.
7.8 Ocena zagrożenia wybuchem pomieszczeń oraz przestrzeni zewnętrznych;

W obiekcie nie przewiduje się występowania pomieszczeń ani stref zagrożonych wybuchem.

7.9 Parametry pożarowe występujących substancji palnych;

W budynku nie przewiduje się przechowywania substancji niebezpiecznych pożarowo. Stosowane będzie typowe wyposażenie właściwe dla funkcji danego pomieszczenia. Podstawowymi materiałami wyposażenia będą materiały takie jak drewno, papier, tkaniny i tworzywa sztuczne.
Na drogach ewakuacyjnych oraz w pomieszczeniach przeznaczonych do jednoczesnego pobytu więcej niż 50 osób - stosowane będą materiały i wyroby budowlane oraz stałe elementy wyposażenia i wystroju wnętrz co najmniej trudnozapalne.

7.10. Warunki ewakuacji

Budynek posiada układ komunikacyjny korytarzowy z trzema klatkami schodowymi łączącymi kondygnacje od parteru do poddasza. Oprócz tego istnieją jeszcze inne schody do komunikacji wewnętrznej. Z pomieszczeń na każdej kondygnacji nadziemnej zapewnione są dwa kierunki ewakuacji do klatek schodowych. Klatki schodowe na poziomie parteru mają wyjścia na zewnątrz.
Przewidywana liczba osób $\mathrm{w} \mathrm{n} / \mathrm{w}$ pomieszczeniach o numerach:

- parter-037 Sala widowiskowa $160,30 \mathrm{~m}^{2}-150$ osób.
- parter - 038 Sala wystaw $127,30 \mathrm{~m}^{2} \quad-25$ osób.
- I piętro-127 Sala zajęć tanecznych $115,60 \mathrm{~m}^{2}$ - 30 osób.
- poddasze - 211 Pomieszczenie do ćwiczeń grup obrzędowych $119.4 \mathrm{~m}^{2}$ - 20 osób.
- poddasze - 213 Sala konferencyjna $66,70 \mathrm{~m}^{2}-30$ osób.
- poddasze - 218 Izba pamięci $92,0 \mathrm{~m}^{2}$ - 35 osób.

W pozostałych pomieszczeniach budynku może przebywać po kilka osób.

7.11. Urządzenia przeciwpożarowe w obiekcie

a) Hydranty p. pożarowe $\varnothing 25$ zlokalizowane na n / w kondygnacjach:

- parter 3 hydranty.
- I piętro 2 hydranty.
- poddasze 2 hydranty
b) Przeciwpożarowy wyłącznik prądu
c) Awaryjne oświetlenie ewakuacyjne - na ciągach komunikacyjnych oraz w sali widowiskowej (natężenie min. 1 lx w osi drogi ewakuacji oraz 5 lx w miejscu lokalizacji hydrantów i gaśnic; czas działania min. 1 godzina)
Urządzenia przeciwpożarowe w obiekcie powinny być wykonane zgodnie z projektem uzgodnionym przez rzeczoznawcę do spraw zabezpieczeń przeciwpożarowych, a warunkiem dopuszczenia do ich użytkowania jest przeprowadzenie odpowiednich dla danego urządzenia prób i badań, potwierdzających prawidłowość ich działania.

7.12. Wyposażenie w gaśnice

Wg wskaźnika 2 kg środka gaśniczego (np . proszku ABC) na każde $100 \mathrm{~m}^{2}$ powierzchni, rozmieszczenie sprzętu z zachowaniem dostępu szerokości min. 1 m i dojścia nie dalej niż 30 m do najbliższej gaśnicy, miejsce umieszczenia gaśnic należy oznakować.

7.13. Drogi pożarowe.

Dojazd do celów pożarowych zapewniony jest istniejącym zjazdem z drogi publicznej krajowej na utwardzony plac przed budynkiem. Możliwy jest również przejazd poza budynek i wyjazd inną drogą. Wyjścia ewakuacyjne z budynku posiadać będą połączenie z drogą utwardzonym dojściem.
7.14. Zaopatrzenie w wodę do celów przeciwpożarowych

Zaopatrzenie w wodę do zewnętrznego gaszenia pożaru: wymagane jest w ilości $20 \mathrm{l} / \mathrm{s}$, zapewnione będzie z sieci wodociągowej.
Hydrant nadziemny do celów pożarowych zlokalizowany jest na działce nr. 1001, na terenie objętym projektowaniem w odległości 11 m od budynku objętego niniejszym opracowaniem. Kolejny w odległości do 150 m .

7.15. Drewniana konstrukcja więžby dachowej łącznie z slupami będzie zabezpieczona do stopnia trudno zapalności a wszystkie elementy drewniane będą obudowane plytami GKF grubości $12,5 \mathrm{~mm}$ zapewniającą odporność ogniową R30.

Przed oddaniem obiektu do użytku należy:

- wyposażyć obiekt w podręczny sprzęt gaśniczy
- obiekt wyposażyć w oznakowanie ewakuacyjne i ochrony przeciwpożarowej (kierunki i wyjścia ewakuacyjne, miejsca lokalizacji gaśnic i hydrantów, przeciwpożarowego wyłącznika prądu, głównego kurka gazu) oraz instrukcje postępowania na wypadek pożaru
- opracować lub zaktualizować istniejącą instrukcję bezpieczeństwa pożarowego dla obiektu

I|l|l|l|l

(0)
blacha praska na racbek deskowanie ažurowe Komiffery 4x5 cm
Polia panoprzepuszczalna
(D2)
blacha praska na rablk deskowanie ažunowe Konirfolty Ax5 cm folia paroprzepuszczalna nadbiski krokwi gr. 90 cm woina mineralma 30 cm
folia paroszczaina
pryty GR $12,5 \mathrm{~mm}$
(G4)
Wypraw olewacyjna
styropian grafitiouy 15 cm cegro siliterowa 38 cm

(G3)

Wyprawa elewacyina
styropian granitowy 15 cm gazobaion kl. $600 \quad 24 \mathrm{~cm}$ pustka powiefruna ok. 15 cm sciank GR jednosironna na ruszcie sysiem. 12 cm
(53)
phyta OSB zżurowo 2,2cm konirfaty 4x5 cm folia paroprzepuszczalna nadbiiki bolak gro. 10 cm wolna mineralna 30 cm folia paroszczelna phyy GRF $12,5 \mathrm{~mm}$

(S2)

posadzka
wylenka cem. $\quad 6 \mathrm{~cm}$
stiyrodur 3 cm
folia paroszczelna
wylewka wyrównawcza 1 cm
konsirukcje siropu
tyynk cem.-wap. \qquad

(50)

posadzka

wylewke cem. 6 cm styrodur 8 cm
folia paroszcza/na
wylewke wyrownawcza 1 cm
posadzka befonowa 45 cm podsypke zwirowa 25 cm

obioki bucowlany	Przebudowa, rozbudowa i nadbudowa budynku Domu Kufury			
adras obiektu	Nowosielce, dz. nr 1000, 1001 i 1688			
przedmiot rysunku	PRZERROS A - A			
branza	ARCHITEKTURA			
ska/a	1:100	nr nssunku	6	maj 2097
projektant:	w ppogel			

(04)
blacha praska na rąbok deskowanie ažurowe Konicratity 4x5 cm
folia paroprzopuszczalna
(D2)
blacha plaska na rąbek doskowanie ažunowe
kontriaty $4 \times 5 \mathrm{~cm}$ folia paroprzepuszczalna nadbitkj knokwi gr. 10 cm woina mineralna 30 cm folia panoszczelna pryy GRF $12,5 \mathrm{~mm}$
(G)

Wyprawa elawacyjina
styropian grafitowy 15 cm certo silikatoma 38 cm
tyynk cem. -wap.

(G3)

wyprawa Blowacyjna
styropian grafitiowy 15 cm gazobefon kl. 600 24cm pustka powietruna ok. 15 cm scianka GKF jednosironna na ruszcie system. 12 cm

(53)
phria OSB azurowo 2,2cm Kontriaty $4 \times 5 \mathrm{~cm}$ folia paroprzepuszczalna nadbitki belek gr. 40 cm weina mineralna 30 cm
folia paroszczelna pryty GRF

12,5mm
(S2)

wylenka cem.	(6) cm
styrodur	3 cm
folia paroszczelna	
WY/Ewk mypown	
konsitukcje siropus	
fyyk cem. -wap.	7,5 cm

(SO)

posadzka

wylawke cem. 6 cm
styrodur 8 cm folia paroszczelna wylewke wyrównawcza 4 cm posadrka beronowa 45 cm podsypka ziwirowa 25 cm

obleki budowlany	Przsbudowa, rozbudowa i nadbudowa budynku Domu Kulfury			
adres obiektu	Nowosielce, dz. nr 1000, 1001 i 1688			
przedmiot rysunku	PRZERRÓS - -			
branza	ARCHITEKTURA			
skala	1:100	nr rysunku	7	maj 2017
projekiant:				

(D)
blacha praska ma rąbek deskowanie ażurowe Komiffley tus cm folia paroprzepuszczalna
(02)
blacha praska na rabok deskowanie aziurowe Konirtiaty 4x5 cm folia paroprzepuszczalna nadbitki krokuai gr. 10 cm worna mineralna 30 cm folia panoszczelna pryty GKF $12,5 \mathrm{~mm}$
(G)
wyprawa alawacyjina
styropian grainiowy 15 cm cegto silikatowa
tyynk com. wap. 38 cm
(G2)
wyprawa elowacyina
styropian grafitowy 15 cm $\begin{array}{ll}\text { gazoboron kl. } 600 & 30 \mathrm{~cm} \\ \text { tyynk com. Wap. } & 1.5 \mathrm{~cm}\end{array}$ (G2) gazobetom kl. $600 \quad 25 \mathrm{~cm}$

(G3)

wyprawa elowacyjna

 styropian grafiowy 15 cm gazoberon kl. $600 \quad 24 \mathrm{cmu}$ pusika powieirzna ok. 15 cm Scianko GKjednostronna na ruszcie system. 12 cm
(33)

Polia panoprzepuszczalna Weina mineralne 20 cm
folia paroszczelna
pryity GRF $12,5 \mathrm{~mm}$
(53)
phrt OSB aíurowo 2,2cm Konitraty 4x5 cm folia paroprzepuszczalna nadbitki balak gr. 10 cm weine mineralne 30 cm folia paroszczelna pryty GRF
$12,5 \mathrm{~mm}$
(S2)

posadzka
wylewka cem. $\quad 6 \mathrm{~cm}$
styrodur
folia paroszczelna
wylewka wyrownawcza
Konstrukcja siropu
tyynk cem. wap.

(54)
posadzka
wylewka cem. $\quad 6 \mathrm{~cm}$
styyodur
folia paroszczelna
wylewka wyrównawcza 1 cm
konsirukcja stropu
ty ty cem. -wap. 7,5 cm

(59)	S09
posadzka	posadzka
wylowke cem. 6 cm	mylewke cem. $\quad 10 \mathrm{~cm}$
styrodur 4 cm	styrodur 5 cm
folia paroszczeina	Polia paroszczelna
wylewk wyrownawcza 1 cm	wylewka wyrownawcza 4 cm
POsadzka beronowa 10 cm	posadzka betonowa 25 cm
podsypka żwirow 20 cm	podsypka ziwirowa 35 cm

obloki budowlany	Przebudowa, rozbudowa i nadbudowa budynku Domu Kukury				
adras obiektu	Nowosislce, dz. nr 1000, 1001 i 1688				
przedmiot rysunku	PRZERRÓS CoC				
branza	ARCHITEKTURA				
skala	1:100	nr rysunku	8	8	maj
projektant:		chitekt Kanke, cznei bez ograni 11/06 4306			hitekt ka ektant ane j bez 03 ink

(0)
blacha praska na rąbek deskowanie ažurowe Konirfatity $4 \times 5 \mathrm{~cm}$ folia paroprzepuszczalna
(102)
blacha proska na rębek
deskowanie ažurowe
komirfinity $4 \times 5 \mathrm{~cm}$
folia paroprzepuszczalna nadbidkj knokwi gro. 10 cm werna mineralina 30 cm weina mineralna folia paroszczelna PTyTy GKF $12,5 \mathrm{~mm}$
\qquad

Nazwa obiektu: PRZEBUDOWA, ROZBUDOWA i NADBUDOWA DOMU KULTURY.

Adres obiektu:	Nowosielce
Jednostka ewidencyjna:	Sanok - G
Obręb ewidencyjny:	[Nr. 0004] Nowosielce
Numer dzialki:	1000, 1001, 1688.
Nazwa opracowania:.	Projekt wykonawczy.
Branża:	konstrukcja
Inwestor:	Gmina Zarszyn
	ul. Bieszczadzka 74
Adres inwestora:	38-530 Zarszyn
Nazwa Jednostki Projektowania:	Zakład Projektowania i Uslug Inwestycyjnych ul. Przelotowa 10, 38-500 SANOK

Projektant :

\qquad

Sprawdzajacy:

Sanok 05-2017r.

Część opisowa branży konstrukcyjnej

1.Układ konstrukcyjny obiektu
2.Rozwiązania konstrukcyjno - materiałowe podstawowych elementów konstrukcyjnych
3.Założenia do obliczeń konstrukcji
4. Warunki gruntowe i sposób posadowienia
5.Wyniki obliczeń konstrukcji

Część rysunkowa

1. Rzut fundamentów	$1: 100$
2. Konstrukcja piwnic	$1: 100$
3. Konstrukcja parteru	$1: 100$
4. Konstrukcja piętra	$1: 100$
5. Konstrukcja poddasza	$1: 100$
6. Konstrukcja więżby dachowej	$1: 100$

1.Układ konstrukcyjny obiektu.

Rozbudowę i przebudowę budynku Domu Kultury w Nowosielcach zaprojektowano w oparciu o najprostsze schematy konstrukcyjne i ogólnodostępne materiały.

Budynek został zaprojektowany w technologii tradycyjnej z użyciem najprostszych elementów budowlanych drobnowymiarowych oraz z elementami żelbetowymi wylewanymi „na mokro".

2.Rozwiązania konstrukcyjno - materiałowe podstawowych elementów konstrukcyjnych.

- fundamenty:
ławy i ściany fundamentowe - żelbetowe wylewane na budowie
- ściany:
nośne zewnętrzne
do poziomu parteru - beton gr. 25 cm i 30 cm , wyżej pustak siporeks 24 cm i 30 cm , styropian 12 cm
nośne wewnętrzne
do poziomu parteru - beton gr. 25 cm i 30 cm , wyżej pustak siporeks 24 cm i 30 cm
- stropy:

Żelbetowe krzyżowo - zbrojone wylewane na budowie

- schody:
konstrukcja płytowo - belkowa żelbetowa wylewana na budowie
- nadproża:
prefabrykowane typu "L", lub Kleina
- więźba dachowa
drewniana, płatwiowo - kleszczowa
3.Założenia do obliczeń konstrukcji.
- obciążenie śniegiem: strefa 3-300 m n.p.m.
- obciążenie wiatrem: strefa III
- obciążenie użytkowe poddasza: $2,0 \mathrm{kN} / \mathrm{m}^{2}$, schody i korytarze: $4,00 \mathrm{kN} / \mathrm{m}^{2}$, sala taneczna: $5,00 \mathrm{kN} / \mathrm{m}^{2}$, biblioteka: $4,00 \mathrm{kN} / \mathrm{m}^{2}$, sala konferencyjna: $3,00 \mathrm{kN} / \mathrm{m}^{2}$, izba pamięci $4,00 \mathrm{kN} / \mathrm{m}^{2}$
- drewno: klasy C30
- beton: B25
- stal zbrojeniowa: 34GS, St3SX
- strefa przemarzania $h_{z}=1,2 \mathrm{~m}$

4. Waruki gruntowe i sposób posadowienia.

Pod względem geologicznym omawiany teren położony jest w miejscowości Nowosielce w dolinie potoki Pielnica. Wyróżnia się tu utwory trzeciorzędowe w postaci piaskowców i łupków trzeciorzędowych oraz czwartorzędowe w postaci glin piaszczystych twardoplastycznych, pospółki w stanie zagęszczonym zalegające od 0,6 do ok. 2,0 m.

W wyniku badań gruntu wydzielono III warstwy geotechniczne. Warstwa II - pospółka w stanie zagęszczonym - na posadowienie fundamentów posiada następujące parametry:

$$
\begin{array}{ll}
\text { - gęstość objętościowa } & -2,0 \mathrm{t} / \mathrm{m}^{3} \\
\text { - stopień zageszczenia } \mathrm{I}_{\mathrm{d}} & -0,75 \\
\text { - kąt tarcia wewnętrznego } & -40,3^{\circ} \\
\text { - moduł ściśliwości pierwotnej }-207,71 \mathrm{MPa}
\end{array}
$$

Warstwa ta zalega do głębokości średnio $1,8 \mathrm{~m}$, zwierciadło wody gruntowej zostało nawiercone na głębokości $2,5 \mathrm{~m}$.

Ustala się I kategorię geotechniczną posadowienia

Z uwagi na warunki geotechniczne projektuje się fundamenty w postaci ław żelbetowych posadowione na poziomie posadowienia budynku głównego w obrębie warstwy geotechnicznej.

5. Wyniki obliczeń konstrukcji.

5.1. Krokiew $\alpha=\mathbf{3 5}^{\circ}, \mathbf{1}_{0}=\mathbf{3 , 1 0} \mathrm{m}$

Zestawienie obciążeń:

- blacha na deskowaniu $\quad 0,35 * 1,3=0,46 \mathrm{kN} / \mathrm{m}^{2}$
- konstrukcja dachu $\quad 0,12 * 1,3=0,16 \mathrm{kN} / \mathrm{m}^{2}$
- wełna mineralna $\quad 0,30 * 1,2 * 1,3=0,47 \mathrm{kN} / \mathrm{m}^{2}$
- płyta gipsowa

$$
\begin{gathered}
0,012 * 12,0^{*} 1,3 \\
\text { RAZEM: }
\end{gathered}=\frac{0,19 \mathrm{kN} / \mathrm{m}^{2}}{1,28 \mathrm{kN} / \mathrm{m}^{2}}
$$

$$
1,28: 0,819=1,56 \mathrm{kN} / \mathrm{m}^{2}
$$

- obciążenie śniegiem $\quad 1,2 * 1,00 * 1,5=1,80 \mathrm{kN} / \mathrm{m}^{2}$
- obciążenie wiatrem $400 * 0,32 * 1,8 * 1,3=0,30 \mathrm{kN} / \mathrm{m}^{2}$
łącznie obciążenie na krokiew

$$
\mathrm{q}=0,9 *(1,56+1,80+0,25)=3,25 \mathrm{kN} / \mathrm{m}=>\mathrm{M}=6,05 \mathrm{kNm}
$$

Przyjęto krokiew 9/20 o $\mathrm{W}_{\mathrm{x}}=600 \mathrm{~cm}^{3}$

5.2. Płatew.

obciążenie na płatew

$$
\mathrm{q}=3,61 * 3,86=13,94 \mathrm{kN} / \mathrm{m} \Rightarrow 1_{\max }=2,54 \mathrm{~m}
$$

Przyjęto płatew $16 / 20 \circ \mathrm{~W}_{\mathrm{x}}=1067 \mathrm{~cm}^{3}$

5.3. Pozostałe elementy więźby dachowej.

Ze względu na warunki wynikające z norm oraz uproszczenie wykonawstwa przyjęto:

- murłata
- słupek 16/16
- miecz 9/20
- krokiew narożna i koszowa 16/20

Zadaszenie tarasu i schodów
Płatew \mathbf{P} wieloprzęsłowa $\alpha=27^{\circ}$

- blacha na deskowaniu

$$
0,35 * 1,3: 0,891=0,51 \mathrm{kN} / \mathrm{m}^{2}
$$

- obciążenie śniegiem
- obciążenie wiatrem
obciążenie na płatew

$$
\mathrm{q}=0,9 * 2,68=2,41 \mathrm{kN} / \mathrm{m}
$$

przyjęto profil gięty $90 \times 90 \times 4$
Wsporniki poprzeczne ze słupkiem KD
obciążenie na wspornik

$$
\mathrm{q}=3,3 * 2,68=8,84 \mathrm{kN} / \mathrm{m}
$$

przyjęto profil gięty $90 \times 90 \times 4$ oraz na słupki i pozostałe części wspornika profil $60 \times 60 \times 3$

5.4. Schody w narożniku południowym

Płyta biegowa PB10 $\mathbf{I}_{0}=2,5 \mathrm{~m}$
Zestawienie obciążeń:
-płyta $0,12 * 24 / 0,856=3,36 * 1,1=3,70 \mathrm{kN} / \mathrm{m}^{2}$
-stopnie $0,5 * 0,1689 * 24=2,03 * 1,1=2,23 \mathrm{kN} / \mathrm{m}^{2}$
-lastryko $[0,03+0,02 * 0,1689 / 0,28] * 22 * 1,2=1,11 \mathrm{kN} / \mathrm{m}^{2}$
-tynk $0,015 * 18,3 / 0,856=0,32 * 1,2=0,39 \mathrm{kN} / \mathrm{m}^{2}$
-obc. użytkowe $4,00 * 1,3=\quad \underline{5,20} \mathrm{kN} / \mathrm{m}^{2}$
RAZEM: $\quad 12,63 \mathrm{kN} / \mathrm{m}^{2}$
$M=0,125^{*} 12,63 * 2,5^{2}=9,87 \mathrm{kNm} \quad$ przyjęto $\varnothing 10 \mathrm{co} 12,5 \mathrm{~cm}$ dołem
Płyty biegowe Pb 8 i Pb 9 zbroić jak Pb 10
Płyta spocznikowa PS6 $\mathbf{I}_{0}=\mathbf{1 , 8 6} \mathrm{m}$
Zestawienie obciążeń:
-płyta $0,12 * 24=2,88 * 1,1=3,17 \mathrm{kN} / \mathrm{m}^{2}$
-lastryko $0,03 * 22 * 1,2 \quad=0,79 \mathrm{kN} / \mathrm{m}^{2}$
-tynk $0,015 * 18,3=0,27 * 1,2=0,33 \mathrm{kN} / \mathrm{m}^{2}$
-obc. użytkowe $\quad 4,00 * 1,3=\underline{5,20} \mathrm{kN} / \mathrm{m}^{2}$
RAZEM: $\quad 9,49 \mathrm{kN} / \mathrm{m}^{2}$
$\mathrm{M}=0,125^{*} 9,49 * 1,86^{2}=4,10 \mathrm{kNm} \quad$ przyjęto $\varnothing 8$ co $12,5 \mathrm{~cm}$ dołem
Płytę PS5 wykonać o grubości 10 cm i zbroić jak PS6
Belka spocznikowa BS6 20*30 $\mathbf{c m} \mathrm{l}_{0}=\mathbf{3 , 5} \mathrm{m}$
Zestawienie obciążeń:
ze schodów
z płyty spocznikowej

$$
\begin{aligned}
1,22 * 12,63 & =15,41 \mathrm{kN} / \mathrm{m} \\
1,0 * 9,49 & =\frac{9,49 \mathrm{kN} / \mathrm{m}}{24,90 \mathrm{kN} / \mathrm{m}} \\
\text { RAZEM: } &
\end{aligned}
$$

przyjęto dołem $5 \varnothing 12$, strzemiona $\varnothing 6$ co 10 cm .
Belka B6 25* $30 \mathrm{~cm} \mathrm{I} \mathrm{I}_{0}=3,5 \mathrm{~m}$
Zestawienie obciążeń:
z płyty spocznikowej
ze ścianki działowej
tynk
$0,9 * 9,49=8,54 \mathrm{kN} / \mathrm{m}$
$3,22 * 0,12 * 9,0 * 1,3=4,52 \mathrm{kN} / \mathrm{m}$
$3,22 * 0,03 * 18,0 * 1,2=2,09 \mathrm{kN} / \mathrm{m}$
RAZEM: $\quad 15,15 \mathrm{kN} / \mathrm{m}$
cm
przyjęto dołem $3 \varnothing 12$, strzemiona $\varnothing 6$ co 15

Belka B7 15*30 cm trzyprzęsłowa

Zestawienie obciążeń:
ze ścianki działowej z tynkiem $\quad 6,61 \mathrm{kN} / \mathrm{m}$ z belki BS $40,7 \mathrm{kN}$
przyjęto dołem i górą $3 \varnothing 12$, strzemiona $\varnothing 6$ co 12 cm .

Fundamenty klatki południowej

Szerokość ław i stóp fundamentowych obliczono przy założeniu odporu podłoża gruntowego na poziomie 100 kPa aby zminimalizować osiadanie.

Belka FB40 40*40

Obciążenie odporem gruntu $0,4 * 100 \mathrm{kPa}=40 \mathrm{kN} / \mathrm{m}$
przyjęto $4 \varnothing 12$ dołem i $6 \varnothing 12$ górą, strzemiona $\varnothing 6$ co 15 cm czteroramienne

5.5. Schody główne w hallu przychodni

Płyta biegowa $\mathbf{P b} 7 \mathrm{I}_{0}=\mathbf{2 , 5} \mathrm{m}$
Zestawienie obciążeń:
-płyta $0,12 * 24 / 0,882=2,72 * 1,1=2,99 \mathrm{kN} / \mathrm{m}^{2}$
-stopnie $0,5 * 0,16 * 24=1,92 * 1,1=2,11 \mathrm{kN} / \mathrm{m}^{2}$
-lastryko $[0,03+0,02 * 0,16 / 0,30] * 22 * 1,2=1,07 \mathrm{kN} / \mathrm{m}^{2}$
-tynk $0,015 * 18,3 / 0,882=0,31 * 1,2=0,37 \mathrm{kN} / \mathrm{m}^{2}$
-obc. użytkowe $\begin{array}{r}4,00 * 1,3= \\ \text { RAZEM: }\end{array} \quad \underline{11,74 \mathrm{kN} / \mathrm{m}^{2}}$
$M=0,125^{*} 11,74 * 2,5^{2}=9,17 \mathrm{kNm} \quad$ przyjęto $\varnothing 12$ co 14 cm dołem
Płyty biegowe Pb5 i Pb6 $\mathrm{I}_{0}=\mathbf{3 , 5} \mathbf{~ m}$
Obciążenie jak dla płyty Pb7 + obciążenie z płyty $\mathrm{Pb} 7 \mathrm{q}=14,68 \mathrm{kN} / \mathrm{m}$
$\mathrm{M}=26,75 \mathrm{kNm} \quad$ przyjęto $\varnothing 12 \mathrm{co} 10 \mathrm{~cm}$ dołem
Belka stalowa B5s $\mathbf{l}_{0}=\mathbf{5 , 1 5} \mathbf{m}$
Zestawienie obciążeń:
Ze stropu istniejącego $\quad 12,0 * 1,5=18,00 \mathrm{kN} / \mathrm{m}$
Z biegu Pb6 $\quad 25,25 \mathrm{kN} / \mathrm{m}$
przyjęto 2C200 podparte na ścianie murowanej na poduszce betonowej oraz na słupku z 2C120
Fundament pod słupkiem na parterze - stopa żelbetowa 70×70 gr. 40 cm .

$$
\begin{aligned}
& \text { 5.6. Schody przy Sali widowiskowej } \\
& \text { Płyta biegowa } \mathbf{P b} 1 \mathrm{I}_{0}=2,7 \mathrm{~m} \\
& \text { Zestawienie obciążeń: } \\
& \text {-płyta } 0,12 * 24 / 0,866=3,33 * 1,1=3,66 \mathrm{kN} / \mathrm{m}^{2} \\
& \text {-stopnie } 0,5 * 0,16 * 24=1,92 * 1,1=2,11 \mathrm{kN} / \mathrm{m}^{2} \\
& \text {-lastryko[0,03+0,02*0,162/0,28] } 22 * 1,2=1,10 \mathrm{kN} / \mathrm{m}^{2} \\
& \text {-tynk } 0,015 * 18,3 / 0,866=0,32 * 1,2=0,38 \mathrm{kN} / \mathrm{m}^{2} \\
& \text {-obc. użytkowe } \quad 4,00 * 1,3=5,20 \mathrm{kN} / \mathrm{m}^{2} \\
& \text { RAZEM: } \quad 12,45 \mathrm{kN} / \mathrm{m}^{2}
\end{aligned}
$$

$\mathrm{M}=0,125^{*} 12,45^{*} 2,7^{2}=11,35 \mathrm{kNm} \quad$ przyjęto $\varnothing 10$ co $12,5 \mathrm{~cm}$ dołem
Płyty biegowe $\mathbf{P b} 2, \mathbf{P b} 3$ i $\mathbf{P b 4} \mathbf{l}_{0}=\mathbf{2 , 1} \mathbf{~ m}$
Obciążenie jak dla płyty Pb1
$\mathrm{M}=26,75 \mathrm{kNm} \quad$ przyjęto $\varnothing 10$ co 14 cm dołem
Belka spocznikowa Bs1 $l_{o}=\mathbf{3 , 1 0} \mathbf{~ m ~ 2 0 x 3 5}$
Zestawienie obciążeń:
z płyty P8 $\quad 12,0 * 1,3=18,00 \mathrm{kN} / \mathrm{m}$
z biegu $\mathrm{Pb} 1 \quad \underline{16,93} \mathrm{kN} / \mathrm{m}$
RAZEM: $\quad 34,93 \mathrm{kN} / \mathrm{m}$
przyjęto dołem $4 \varnothing 12$, strzemiona $\varnothing 6$ co 10 cm .
Belka spocznikowa Bs4 $\mathrm{I}_{0}=\mathbf{3 , 1 0} \mathbf{~ m ~ 2 0 x 3 0}$
Zestawienie obciążeń:
z płyty Ps4 $12,0 * 0,75=9,00 \mathrm{kN} / \mathrm{m}$
z biegu $\mathrm{Pb} 3 \quad \underline{13,70} \mathrm{kN} / \mathrm{m}$
RAZEM: $\quad 22,70 \mathrm{kN} / \mathrm{m}$
przyjęto dołem $4 \varnothing 12$, strzemiona $\varnothing 6$ co 15 cm .
Belka spocznikowa Bs5 $\mathrm{l}_{0}=\mathbf{3 , 1 0} \mathrm{m} 20 \times 35$
Zestawienie obciążeń:
z płyty P6 $\quad 12,0 * 1,75=21,00 \mathrm{kN} / \mathrm{m}$
z biegu Pb3
$13,70 \mathrm{kN} / \mathrm{m}$
RAZEM: $\quad 34,70 \mathrm{kN} / \mathrm{m}$
przyjęto dołem $5 \varnothing 12$, strzemiona $\varnothing 6$ co 10 cm .

5.7. Płyta P8 przy schodach czteroprzęsłowa

 Zestawienie obciążeń:-płyta $0,12 * 24=2,88 * 1,2=3,46 \mathrm{kN} / \mathrm{m}^{2}$
-wylewka cementowa $\quad 0,07 * 21 * 1,3=1,91 \mathrm{kN} / \mathrm{m}^{2}$
-tynk
-obc. użytkowe

$$
0,02 * 19 * 1,3=0,49 \mathrm{kN} / \mathrm{m}^{2}
$$

$$
4,00 * 1,3=\quad 5,20 \mathrm{kN} / \mathrm{m}^{2}
$$

$$
\text { RAZEM: } \quad 11,06 \mathrm{kN} / \mathrm{m}^{2}
$$

przyjetto $\varnothing 8$ co $12,5 \mathrm{~cm}$ dołem i na podporach
Belki poprzeczne B10 i B11 20*35 cm $\mathbf{I}_{0}=\mathbf{3 , 1} \mathbf{m}$
Obciążenie z płyty $\quad 38,9 \mathrm{kN} / \mathrm{m}$
przyjęto dołem $5 \varnothing 12$, strzemiona $\varnothing 6$ co 10 cm .

5.8. Płyta P3, P6 i P9 hall wejściowy

Zestawienie obciążeń:

\[

\]

przyjęto $\varnothing 10$ co 10 cm dołem i na podporach
Belka B3 25*50 cm l ${ }_{0}=\mathbf{4 , 9} \mathrm{m}$
Obciążenie z płyty $\quad 61,12 \mathrm{kN} / \mathrm{m}$
przyjęto dołem $8 \varnothing 16$, strzemiona $\varnothing 8$ co 20 cm czteroramienne.
Belka B4 25*40 cm $\mathrm{I}_{0}=4,9 \mathrm{~m}$
Obciążenie z płyty $\quad 28,67 \mathrm{kN} / \mathrm{m}$
przyjęto dołem $5 \varnothing 16$, strzemiona $\varnothing 8$ co 15 cm .

5.9. Płyta P1 i P2 krzyżowo zbrojona - izba pamięci

P1 Zestawienie obciążeń:

-płyta $0,19 * 24$	$=4,56 * 1,2=5,47 \mathrm{kN} / \mathrm{m}^{2}$	
-wylewka cementowa	$0,07 * 21 * 1,3=1,91 \mathrm{kN} / \mathrm{m}^{2}$	
-tynk	$0,02 * 19 * 1,3=0,49 \mathrm{kN} / \mathrm{m}^{2}$	
-obc. użytkowe	$4,00 * 1,3=$	$5,20 \mathrm{kN} / \mathrm{m}^{2}$
	RAZEM:	
	$13,07 \mathrm{kN} / \mathrm{m}^{2}$	

punktowe z dachu $\mathrm{P}=38,4 \mathrm{kN}$
przyjęto $\varnothing 14$ co $12,5 \mathrm{~cm}$ i 20 cm dołem, Ø14 co 20 cm górą
P2 Zestawienie obciążeń:

-płyta $0,20 * 24$		
-wylewka cementowa	$4,8 * 1,2$	$=5,76 \mathrm{kN} / \mathrm{m}^{2}$
-tynk	$0,07 * 21 * 1,3$	$=1,91 \mathrm{kN} / \mathrm{m}^{2}$
-zastępcze od ścianek działowych $0,5 * 1,3$	$=0,49 \mathrm{kN} / \mathrm{m}^{2}$	
-obc. użytkowe	$4,00 * 1,3=$	$=0,65 \mathrm{kN} / \mathrm{m}^{2}$
	$20 \mathrm{kN} / \mathrm{m}^{2}$	
	RAZEM:	$14,01 \mathrm{kN} / \mathrm{m}^{2}$

punktowe z dachu $\mathrm{P}=50,7 \mathrm{kN}$
przyjęto $\varnothing 14$ co 10 i 16 cm dołem, $Ø 14$ co 20 cm górą
Belka B2 35*45 cm dwuprzęsłowa
Obciążenie z płyty P2 $\quad 47,00 \mathrm{kN} / \mathrm{m}$
przyjęto dołem $5 \varnothing 16$, górą nad podporą $7 \varnothing 16$ strzemiona $\varnothing 8$ co 18 cm czteroramienne.
Belka B1 35*45 cm dwuprzęsłowa
Obciążenie z płyty P1 $\quad 38,00 \mathrm{kN} / \mathrm{m}$
przyjęto dołem $5 \varnothing 16$, górą nad podporą $7 \varnothing 16$ strzemiona $\varnothing 8$ co 20 cm czteroramienne.
5.10. Płyta P4 i P5 krzyżowo zbrojona - sala zajęć tanecznych

P4 Zestawienie obciążeń:
-płyta $0,19 * 24=4,56 * 1,2=5,47 \mathrm{kN} / \mathrm{m}^{2}$
-wylewka cementowa $\quad 0,07 * 21 * 1,3=1,91 \mathrm{kN} / \mathrm{m}^{2}$
-tynk
-obc. użytkowe

$$
\begin{array}{rr}
5,00 * 1,3= & \underline{6,50} \mathrm{kN} / \mathrm{m}^{2} \\
\text { RAZEM: } & 14,37 \mathrm{kN} / \mathrm{m}^{2}
\end{array}
$$

przyjęto $\varnothing 14$ co $12,5 \mathrm{~cm}$ i 20 cm dołem, Ø14 co 25 cm górą
P5 Zestawienie obciążeń:
-płyta $0,20 * 24=4,8 * 1,2=5,76 \mathrm{kN} / \mathrm{m}^{2}$
-wylewka cementowa $\quad 0,07 * 21 * 1,3=1,91 \mathrm{kN} / \mathrm{m}^{2}$
-tynk
-obc. użytkowe

$$
0,02 * 19 * 1,3=0,49 \mathrm{kN} / \mathrm{m}^{2}
$$

$$
5,00 * 1,3=\underline{6,50} \mathrm{kN} / \mathrm{m}^{2}
$$

RAZEM: $\quad 14,66 \mathrm{kN} / \mathrm{m}^{2}$
Ścianki działowe $\quad 7,31 \mathrm{kN} / \mathrm{m}$
przyjęto $\varnothing 14$ co 10 i 16 cm dołem, Ø14 co 20 cm górą
Belka B9 35*45 cm dwuprzęsłowa
Obciążenie z płyty P5 $\quad 44,00 \mathrm{kN} / \mathrm{m}$
przyjęto dołem $5 \varnothing 16$, górą nad podporą $7 \emptyset 16$ strzemiona $\varnothing 8$ co 18 cm czteroramienne.
Belka B8 35*45 cm dwuprzęsłowa
Obciążenie z płyty P4 $\quad 41,00 \mathrm{kN} / \mathrm{m}$
przyjęto dołem $5 \varnothing 16$, górą nad podporą $6 \varnothing 16$ strzemiona $\varnothing 8$ co 20 cm czteroramienne.
Nadproże N4 30*65 dwuprzęsłowe (10 cm nad stropem)
$\begin{array}{rr}\text { Obciążenie z płyty P4 } & 41,00 \mathrm{kN} / \mathrm{m} \\ \text { z płyty P1 } & 38,00 \mathrm{kN} / \mathrm{m} \\ \text { ze ściany } & \underline{33,22 \mathrm{kN} / \mathrm{m}} \\ \text { RAZEM: } & 112,22 \mathrm{kN} / \mathrm{m}\end{array}$
przyjęto dołem $6 \varnothing 16$, górą nad podporą $6 \varnothing 16$ strzemiona $\varnothing 8$ co 15 cm czteroramienne.

5.11. Płyta P7 krzyżowo zbrojona

Zestawienie obciążeń:

$$
\begin{array}{lrr}
\text {-płyta } 0,12 * 24 & 2,88 * 1,2 & =3,46 \mathrm{kN} / \mathrm{m}^{2} \\
\text {-wylewka cementowa } & 0,07 * 21 * 1,3=1,91 \mathrm{kN} / \mathrm{m}^{2} \\
\text {-tynk } & 0,02 * 19 * 1,3=0,49 \mathrm{kN} / \mathrm{m}^{2} \\
\text {-obc. użytkowe } & 4,00 * 1,3= & \underline{5,20} \mathrm{kN} / \mathrm{m}^{2} \\
& \text { RAZEM: } & 11,06 \mathrm{kN} / \mathrm{m}^{2}
\end{array}
$$

przyjęto $\varnothing 10$ co 25 cm dołem, $\varnothing 8$ co 25 cm górą.
Płyta P10 $\mathbf{l}_{0}=3,5 \mathrm{~m}$
Zestawienie obciążeń:

-płyta $0,12 * 24$	$2,88 * 1,2$	$=3,46 \mathrm{kN} / \mathrm{m}^{2}$
-wylewka cementowa	$0,07 * 21 * 1,3=1,91 \mathrm{kN} / \mathrm{m}^{2}$	
-tynk	$0,02 * 19 * 1,3=0,49 \mathrm{kN} / \mathrm{m}^{2}$	
-obc. użytkowe	$4,00 * 1,3=$	$\underline{5,20} \mathrm{kN} / \mathrm{m}^{2}$
	RAZEM:	$11,06 \mathrm{kN} / \mathrm{m}^{2}$
$\mathrm{M}=0,125 * 11,06 * 3,5^{2}=16,94 \mathrm{kNm}$	przyjęto $\varnothing 10 \mathrm{co} 10 \mathrm{~cm}$ dołem	

$$
\begin{aligned}
& \text { 5.12. Nadproża stalowe Ns1-3,5-8 } \mathrm{I}_{0}=\mathbf{1 , 1 m} \\
& \text { Zestawienie obciążeń: } \\
& \text {-stropy } 12,0 * 6,1 * 2=146,40 \mathrm{kN} / \mathrm{m} \\
& \text {-ściana } 0,4 * 4,3 * 19,0 * 1,2=39,22 \mathrm{kN} / \mathrm{m} \\
& \text { RAZEM: } \quad 185,62 \mathrm{kN} / \mathrm{m}
\end{aligned}
$$

przyjęto 2 dwuteowniki 120.
Nadproże stalowe Ns9 $\mathrm{I}_{0}=3,1+1,1 \mathrm{~m}$
Zestawienie obciążeń:
-stropy $12,0 * 3,0 * 2=72,00 \mathrm{kN} / \mathrm{m}$
-ściana $0,4 * 3,6 * 19,0 * 1,2=57,46 \mathrm{kN} / \mathrm{m}$
RAZEM: $\quad 129,46 \mathrm{kN} / \mathrm{m}$
przyjęto 2 dwuteowniki 240 , słupek z 2 C 120 .
Nadproże stalowe Ns10 $^{1} \mathrm{l}_{0}=1,7 \mathrm{~m}$
Zestawienie obciążeń:
-ściana $0,4 * 6,3 * 19,0 * 1,2=57,46 \mathrm{kN} / \mathrm{m}$
przyjęto 2 dwuteowniki 120 .

5.12. Belki wzmacniające strop nad piętrem

Bsw1 $\mathrm{l}_{0}=10,6 \mathrm{~m}$

Dodatkowe obciążenie ze stropu: $3,0 * 1,3=3,9 \mathrm{kN} / \mathrm{m}^{2}$. Belki w rozstawie $2,43 \mathrm{~m}$, obciążenie na belkę od obc. dodatkowego $\mathrm{q}=9,48 \mathrm{kN} / \mathrm{m}$ przyjęto HEB 240.

Bsp1 $\mathrm{I}_{0}=3,0 \mathrm{~m}$

Dodatkowe obciążenie ze stropu: $3,0 * 1,3=3,9 \mathrm{kN} / \mathrm{m}^{2}$. Belki w rozstawie $2,6 \mathrm{~m}$, obciążenie na belkę od obc. dodatkowego $\mathrm{q}=10,14 \mathrm{kN} / \mathrm{m}$
przyjęto dwuteownik 140.
Bsw2 $\mathrm{I}_{0}=5,9 \mathrm{~m}$
Dodatkowe obciążenie ze stropu: $5,0 * 1,3=6,5 \mathrm{kN} / \mathrm{m}^{2}$. Belki w rozstawie $3,2 \mathrm{~m}$, obciążenie na belkę od obc. dodatkowego $\mathrm{q}=20,8 \mathrm{kN} / \mathrm{m}$ przyjęto HEB 200.
Bsp2 $\mathrm{I}_{0}=3,6 \mathrm{~m}$
Dodatkowe obciążenie ze stropu: $5,0 * 1,3=6,5 \mathrm{kN} / \mathrm{m}^{2}$. Belki w rozstawie $2,7 \mathrm{~m}$, obciążenie na belkę od obc. dodatkowego $\mathrm{q}=17,55 \mathrm{kN} / \mathrm{m}$ przyjęto HEB 120.
Bsw3 $\mathrm{l}_{0}=5,7 \mathrm{~m}$
Dodatkowe obciążenie ze stropu: $4,0 * 1,3=5,2 \mathrm{kN} / \mathrm{m}^{2}$. Belki w rozstawie $2,7 \mathrm{~m}$, obciążenie na belkę od obc. dodatkowego $\mathrm{q}=14,04 \mathrm{kN} / \mathrm{m}$ przyjęto HEB 160.
Bsp3 $\mathrm{l}_{0}=3,6 \mathrm{~m}$
Dodatkowe obciążenie ze stropu: $4,0 * 1,3=5,2 \mathrm{kN} / \mathrm{m}^{2}$. Belki w rozstawie $1,8 \mathrm{~m}$, obciążenie na belkę od obc. dodatkowego $\mathrm{q}=9,36 \mathrm{kN} / \mathrm{m}$
przyjęto dwuteownik 140.

5.13. Fundamenty.

W celu zminimalizowania osiadań przyjęto dopuszczalny odpór podłoża gruntowego na poziomie 100 kPa .
Fundament belkowy FB25 $\mathbf{2 5 * 4 0} \mathbf{~ c m}$
Obciążenie odporem gruntu $0,25 * 100=25 \mathrm{kN} / \mathrm{m}$ przyjęto $4 \varnothing 16$ górą, strzemiona $\varnothing 8$ co 15 cm .
Fundament belkowy FB30 $30 * 40 \mathrm{~cm}$
Obciążenie odporem gruntu $0,30 * 100=30 \mathrm{kN} / \mathrm{m}$ przyjęto $5 \varnothing 16$ górą, strzemiona $\varnothing 6$ co 20 cm .
Fundament belkowy FB40 $40 * 40 \mathrm{~cm}$
Obciążenie odporem gruntu $0,40 * 100=40 \mathrm{kN} / \mathrm{m}$
przyjęto $6 \varnothing 16$ górą, strzemiona $\varnothing 8$ co 20 cm czteroramienne.
int Tateensz Koprowski 38500 Sanok

\square częśc niepodpiwniczona
\square czesć istinieqca
\square projehtowane fundamenty

